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1. Introduction

The purpose of the present paper is to study the concepts of Hopf star operations and
twisted Hopf star operations in the theory of quantum groups. This study is motivated by a
number of physical considerations that we shall discuss in this section.

First of all, one should remember that the notion of quantum group (Hopf algebra) does
not make use of a star operation — roughly speaking, the notion of complex conjugate
— choosing comes only at a later stage. Such an operation is an antimultiplicative and
antilinear involution which could be quite arbitrary when the (associative) algebra under
consideration is not a Hopf algebra.

However, the existence of a coproduct allows to distinguish two particular kinds of star
operations. The problem is to relate the star operations that one can define on the algebra
H and on its tensor squaié ® H, since we have a very special embedding of the first
algebra into the latter one given by the coproductAlf = a1 ® ay, it may be that the
chosen star such that(a*) = a7 ® a5 (a Hopf star operation) but it also could happen that
A(a*) = a3 ® a] (a twisted Hopf star operation).

Actually, one could define also “partially twisted stars”, which in a sense continuously
interpolates between a Hopf and a twisted star (see [1]), but these involve additional data,
anelemenyf €e HQ® H.

In the case of Lie groups or Lie algebras, star operations are used to define real forms.
However, for Hopf algebras the notion of “real form” is slightly more subtle (we shall say
more about it later), but it is a priori clear that the notions of complex conjugate and of star
representations should be discussed as soon as one wants to endow a representation space
with some sort of scalar product.

A general discussion of star versus twisted star operations seems to be lacking in the litera-
ture: mathematical books on quantum groups (for instance [2] or [3]) only discuss (genuine)
Hopf star operations, the same being true for all research papers studfisalgebra as-
pects of “matrix quantum groups” (in the sense of Woronowicz [4]). In the physics literature,
most papers dealing with applications of quantum groups to integrable models, spin chains,
or conformal field theory, usually do not choose any particular star operation at all on the
guantum group of interest. But sometimes they do, and it turns out that the chosen star
is often a twisted star — although usually the authors do not acknowledge the fact that it
is 50,2 and this state of affairs creates some confusion. Quantum groups have also been
discussed in relation with the possibility ¢fdeforming the Lorenz group, and here again,
the two possibilities (twisted versus non-twisted) appear in the physical literature: from one
side we have the papers [7] or [8], whereas from the other we have the papers [9,10].

Another motivation for our work comes from the possibility, as advocated by Connes
[11], that reduced quantum groups lig(sl(2, C)) at a cubic root of unity could have some
essential role to play in the formulation of fundamental interactions (Standard Model). This
suggestion is based upon the following two observations: first of all, whisnchosen
to be a cubic root of unity the algebra of “functionBun(SL, (2, C)) is a Hopf-Galois

2with the notable exception of papers by Mack and Schomerus [5,6].
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extension ofFun(SL(2, C)) — the algebra of complex valued functions on the Lorenz
group — the fiber being a finite dimensional quantum gréiywhose Hopf dual is a finite
dimensional Hopf algebra quotient®3(sl(2, C)) (that we shall call#) of the quantum
enveloping algebr&/, (sl(2, C)). Next, for thisq the semisimple part of turns out to be
isomorphic with the algebra? (3, C) & M (2, C) @ C. Itis then tempting to use the tools of
non-commutative geometry to build a physical model that would recover the usual Standard
Model — may be a generalization of it—incorporating some action of an hitherto unnoticed
finite quantum group of symmetries. The existence of a non-trivial coproduct mixing the
different components @i and the nature of the representations of this non-semisimple Hopf
algebra make it quite hard to recover the usual model of strong and electroweak interactions;
this has not been achieved yet. In any case, it is clearly of interest to analyze in detail the
structure of the representation theory of this Hopf algebra, and to pay particular attention to
the different kinds of “reality” structures that one can find for these representations. For these
reasons, and although we decided to write quite a general paper, most explicitly discussed
examples will involve the case of the finite dimensional algetra- U(;es(sl(z, C)) ata

cubic root of unity.

Another motivation for studying the reality structures and the type of scalar products in
star representations of quantum groups comes from our previous work [12,13]. Here, a new
kind of gauge fields was obtained: starting from the observation that the reduced quantum
plane (identified with the algebra &f x N complex matrices) is a module-algebra for the
finite dimensional quantum grodp, wheng”' = 1, we build a differential algebra over it by
taking an appropriate quotient of the Wess—Zumino differential algebra over the — infinite
dimensional — quantum plane; generalized differential forms are then obtained by making
the tensor product of the De Rham complex of forms over an arbitrary space—time manifold
times the previous Wess—Zumino reduced differential complex; generalized gauge fields
(and curvatures, etc.) are finally constructed by standard non-commutative geometrical
techniques. Clearly, we wish to construct a Lagrangian model involving the representations
of a quantum group (that knows how to act on such generalized gauge fields), which requires
the study of star (or twisted star) operations on the corresponding modules.

Finally, the last motivation comes from spin chains, integrable models and conformal
theories. The-parameter appearing in many conformal field theory models and integrable
models is a primitive root of unity. Such values as a exXeludethe choice of a Hopf star
operation leading to a compact quantum group8kg (2), for instance. For this reason star
operations used in papers like [14] — where the role of quantum groups is discussed in the
context of spin chains, lik€U, (2) in the XXZmodel — are not true Hopf star operations;
we shall return to this discussion in Section 5.

The structure of our paper is the following.

In Section 2, we gather information on stars operations: Hopf and twisted Hopf stars,
compatible stars on modules and module-algebras, behavior under tensor product of
representations, etc.

In Section 3, we discuss scalar products in representation spaces, its quantum invariance
and associated star representations. As everywhere else in this paper, we first discuss all
the general notions and then exemplify by taking the finite dimensional quantum group
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H = U;*Xsl(2, ©)) for ¢ a primitive odd root of unity (most of the time we take= 3).

The characteristics of the invariant scalar products on the irreducible and the projective
indecomposable representationgbére studied in detail, both in the case where a genuine
or atwisted Hopf staris chosen ®h The same analysis is carried out for the module-algebra
M(N, C).

In Section 4, we examine more particularly the (left) regular representation of a Hopf
algebraH and exhibit two distinguished invariant scalar products. The first one is defined
in terms of the Killing form. The other is built using the left (or right) invariant integral on
the algebraH . We then analyze in detail these scalar products for the cage 8k we
shall see, it happens that for many properties Hopf stars behave usually much better than
twisted Hopf stars.

Appendix A summarizes what is needed for this paper from the structure and represen-
tation theory of the finite dimensional Hopf algebfds= U(;es(sl(z, C)) wheng is an odd
primitive root of unity, in particular the structure of the projective indecomposable modules
(PIMs) and of the corresponding irreducibles.

Appendix B recalls a few properties concerning the adjoint representation of quantum
groups, together with the notions of quantum trace and quantum Killing form.

Appendix C gives a few explicit results concerning a “double cover” of the finite dimen-
sional Hopf algebr&{.

1.1. About notations

F will generically denote a complex Hopf algebra, for example, the algebra of “functions”
on a quantum groupH will be its dual (also a Hopf algebra), so that it can be thought
of as a non-commutative generalization of the group-algebra of a finite group or as the
non-commutative analog of the enveloping algebra of a Lie algebra. As already mentioned,
the particular examples whefé is chosen to be one of the finite dimensional quotients of
U, (sl(2, C)) will be called. V will denote a representation space fér(and we shall
have to specify if it is a left or a right module), and will therefore also be a (left or right)
corepresentation space of the Hopf algeBréinally, M will denote a module-algebra for
H (i.e., a comodule-algebra fat).

2. Stars

2.1. Hopf stars

Remember that a star on an algebra is an involutive antilinear antiautomorphism, i.e.,
(x** =x, (x)* = ax*, xy)* =y*x*, reC.

Now, let the algebra on whickh acts be a complex Hopf algebfa(m, A, n, €, S). In this
case one requires the star to satisfy two extra compatibility conditions [2] with the Hopf
operations:

Ax = xg A, €% = *(CE. (1)
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However, thex’'s on the right-hand side are operators on different spaces and are yet to be
defined ¢ should be a star 0@, and therefore is just complex conjugation. The operation
*g should be an involution o @ H, the standard choice is

*g = * @ *.

A star satisfying (1) with the standard choice«gf is called a Hopf star, and in such a case
H is called a Hopf star algebra.

Actually one could also make the choigg = t(x ® *), wherer is the tensorial flip
(twisting); however, making such a choice and imposing (1) amounts to make the standard
choice forxg and rewrite (1) as

Ax = *®A0p,

whereA%=t o A is the opposite coproduct. We will call this second type of operation a
twistedHopf star, or even a twisted star. In this paper, therefore, we shall always make the
standard choice forg . In this section, we will analyze Hopf star algebras, leaving the study
of the twisted case to Section 2.2.

Remark that there is no need to impose a relation between the star and the antipode (which
is alinear antiautomorphism) because this one arises automatically. In fact, it is easy to see
that

S x Sx =1id. (2)

This is so becauseS—1x = (x § x)~1 satisfies all the conditions for the antipode, which
is unique. We should therefore remember that for Hopf star algebras

Sx=xS"L

Notice that in genera$ has no reason to be equal§o?! (imposing such a property would
exclude all the Drinfeld—Jimbo deformations!).

Given aHopfalgebral, one can consider its duaHopfalgebraF = H* with operations
such that

(Af,h@R') = (f, hH), Vh,h' € H, (ff' h)y=(f® f, Ah),
(St h) = (/. Sh, €(f) = (f.Tu), (IF, h) =€(h), ®3)

where(,) : F ® H — C is the bilinear evaluation pairing. WheH is a Hopf star algebra,
one may also define a dual star BnBy dual star we mean a star éhwhich is also a Hopf
star. Itis easy to verify that the following formula defines such an operation:

(f* h)={f.(Sh*) VheH. 4)
Inwhat followsF will be thought of as the space of functions on a quantum group, and its
dual H as the quantum group analog of the corresponding group algebra (or the enveloping

algebra).

3 The examples that we shall consider in this paper are finite dimensional (and non-semisimple) Hopf algebras,
therefore it will be possible to identify canonically a given Hopf algebra with its bidual.
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Remark that another standard accepted terminology for denoting the star structure of a
(untwisted) Hopf star algebra is “real form on a Hopf algebra”. This name does not imply,
and we do not construct here, argal Hopf subalgebra of{, in the sense of being an
algebra over the fiel® of real numbers (see [1] for a discussion of this point). Ldie a
linear involutive Hopf algebra antiautomorphism (we call itor transposition like in [15])
of a complex Hopf star algebré, and consider the subspatig={h € H/h* = T (h)}.
Suppose moreover thét = Hy @ iHg, T+ = *T and Hp, is invariant by the coproduct
A (i.e., AHr C Hr ® HR), then Hy is areal Hopf algebra associated with the star
and the involutior?". Notice that=Tx is an antilinear involutive automorphishand that
Hp is the set of elements df that are invariant under the conjugatiorNotice also that
if h € Hg, then h, as defined inH, cannot belong tdy since(ih)* = —T (ih). When
H is “classical” (the enveloping algebra of some complex Lie algebra), suéh & the
enveloping algebra of a real Lie algebra. Moreover, in this case one TakesS (since
$2 = id), so in Hr we havex* = T(x) = S(x) = x~1 for group-like elements and
x* =T (x) = S(x) = —x for primitive elements.

2.1.1. Self-conjugate representations and compatible stars on modules

Suppose now that we are given a stgron the Hopf algebr&/, and a representation on
a vector spac®. We may have to face possible situations.

The first possibility is that we may want to define a staion vV and decide to constrain it
by imposing some sort of compatibility with the stgf on the quantum group. The second
possibility is to suppose that we already start with a gtapn V (a priori given); in such
a case@ one can define on the same vector space a new representation called the conjugate
representation. It may happen that both actions — the original one and its conjugate — are
equivalent. In this last case the representation is therefore calédonjugated

Actually, the compatibility condition (see below) between the stars in the first scenario is
just a particular case of the second option, as we defirte be such that the representation
precisely coincides with its conjugate.

Going back to our first problem, suppose now that we want to define agtan V,
which is a representation space for the quantum gi@uand a corepresentation space for
its dual F (i.e., V is a right F-comodule). Call the coactiotg : V > V ® F.

For a Hopf stakr on F it can be checked that the operatida (xQ*)dgr* : V — VQF
is again a right coaction ovi. Therefore, it is natural to impog$é = 8r as the compatibility
condition between the staxg andxy . With a slight abuse of notation we can even write

SR(z") = (bRr2)*, z €V, (5)

where the conjugation on the right-hand side is the natural star structifexof. In this
case we may say that the star is covariant.

41n the case of our favorite examplg, such an operatar can be defined [16], on the generators, by setting
c(X4) = —gKX_, ¢(X_) = —gK X+, c(K) = K.
5 Thinking now only in the Hopf star case, as it is the only one where this notion makes sense.
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V being a (right)F-comodule, it is also a (leftif-module. We have indeed an action
>: H®V — Vgiven by

hez=(id® (h, -))ér(2).

Pairing Eq. (5) with an element e H, and using the duality of real structures we get the
equation

hez¥=[(Sh*>7]*, zeV. (6)

Assuming non-degeneracy of the duality pairing both expressions are completely equivalent,
and imply some restrictions oty givensg Or xpy.

The actioni> of & on V is implemented due to an endomorphigiit] of this vector
space, so one may also write- =p[4]. Using this notation, Eq. (6) can also be written as

p[h](z) = p[h](2),
wherep denotes the conjugate representation
plh](2) = [p[(SH*]1(zH]*

dual to the above’ right coaction® Therefore, the compatibility relation (6) between
the stars onH and V can also be viewed as a very particular case of equivalency of
representations: andp should just coincide. Given the star operations, a representation
is calledself-conjugatef there exists an invertible operatbr: V — V such that

U tp[h]U = plh].

Up to now we did not assume that the representation spagas endowed with a scalar
product(-, -). Therefore, we cannotimpose, at this point, tiahould be unitary. We cannot
assume either that the star operatiorlois an antiunitary operatofy*, w*) = (w, v). For
the same reason too, the notation t (adjoint) was avoided. In any case, a Hopf algebra is, in
particular, an associative algebra, and if it so happens thestlddopf algebrafHk can be
defined the usual classification for representations of real associative algebras on complex
Hilbert spaces will, of course, also hold. We could have three types of representations,
complex, real, and quaternionic; we refer the reader to standard textbooks (see for instance
[17,18)).

2.1.2. Compatible stars on module-algebras
Instead of a comodul¥, we now take a righ¥-comodule-algebra/, i.e., we assume
that the right coactiodr is an algebra homomorphism froM to M ® F,

O0R(Zw) = SRzZORW.

The maps’ : M — M ® F defined as above will again be an algebra homomorphism,
i.e.,8'(zw) = 8’z 8'w. Thus Eq. (5) is still a good requirement when the comod4ilis an

6 Remember that in the “classical” case (i.e., real forms of Lie algebras and their enveloping alg&bras), x
for the Lie algebra generators, and we recognize the usual eqgatiofp* defining the conjugate representation.
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algebra and shows that compatibility of the coaction with a given Hopf star operation needs
only to be verified on the (algebra) generatdrs.

Obviously the dual equation (6) defining compatibility of Hopf stars on left modules
will also have the same properties. Remember that, being aFigltmodule-algebralyf
supports a left action of the du&l of F and indeed this action is compatible with the
product inM (call Ah = h1 ® h»):

he (zw) = (h1>2)(ho > w).

2.1.3. Example of the reduced &2, C) atgV =1

Hopf stars onF and X

First of all, remember that in the quantum case one has three possibilities for the star
operations orFun(SL, (2, C)) (up to star-Hopf homomorphisms). Given the conventions
chosen in [13], they are given on generators by the following.
e The real formFun(SU,(2)): a* =d, b* = —qc, ¢* = —g~1b andd* = a. Moreoverg

should be real.
e The real formFun(SU, (1, 1)): a* =d, b* =qc, c* = g~ b andd* = a. Moreoverg

should be real.
o The real formFun(SL, (2, R)): the conjugation is given by

a*=a, b* = b, c*=c, d*=d. @)

Here,g can be complex but it should be a phase.

Wheng = +i — henceg? = 1 — there are still two other Hopf star structures that have
no classical limit (see [2] and references therein). A systematic analysis of real forms for
special linear quantum grous, (n) was made by Jain and Ogievetsky [19], and in the
case ofGL,, ,(2) or GL! (2) by Ewen et al. [20].

Itis already clear from these results that taking root of unity is incompatible with the
Sy, andSU, (1, 1) real forms. The only possibility if we assumé = 1 is to choose the
Hopf star corresponding eun(SL, (2, R)). Moreover, in such a case the star is compatible
with the finite dimensional Hopf algebra quotieftobtained by factoring this quantum
group by the Hopf ideal defined by [13]" = dV =1, b = ¢V = 0 (takeN odd here,
andgq a primitive Nth root of unity).

The corresponding dual star on the dual Hopf algéhyésl(2, C)) (see [13] or Appendix
A for its structure) is

Xt =—qtXs, X*=—gX_, K* =K. (8)

Here, one can also factor the quantum enveloping algebra by the Hopf ideal defined by
KN =1, Xﬁ =0, XY = 0 and the same remarks concerning the fact that the stars passes
to the quotient{ apply [13].

Compatible star on the quantum pland

The quantum grougrun(SL, (2, C)) coacts on the quantum plane algebra generated
by x, y such thatxy = qyx For a root of unity this algebra can be quotiented by the

7 Inthe case of a module-algebra, the star operation is of course assumed to be antimultipligative §*x*).
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ideal defined by = yV = 1 to obtain a finite dimensional algebra that we c&dl.
M is a right comodule-algebra foF and the right coaction is given b3g(x y) =

(x y)® (Ccl fl) The reduced quantized universal enveloping alg@bracts on this

guantum plane (for compatible formulae for actions and coactions, see for instance [13]).
Up to equivalences (now-homomorphisms) there is only one conjugation on this quantum
plane compatible with the requirements (5) or (6). It works for both the infinite dimensional
algebra or its reduced (finite) quotients whgh = 1. Itis

x*=x, v =y.
Notice that although the star is the identity on the generators, it is non-triviAll@ince
it is an antimultiplicative operation and, for instancey)* = g ~xy.

2.2. Twisted Hopf stars

As we mentioned before there is an alternative way of relating the Hopf and star structures
on a Hopf algebra. It reduces to replacing in (1) the equation for the coprodfict by

Ax = (x ® %) A°P.

Given such a twisted star on a Hopf algelsfathe dual Hopf algebr& = H* can be also
endowed with a dual twisted Hopf star. One just has to define it by

(f* h) = (f 1¥). 9)
It can be readily verified that this operation is a twisted Hopf staF oAs in the untwisted

case, a relation involving the antipode is automatically fulfilled. Now the antipode and the
star commute,

Sx==x%S. (10)

This is so becauseSx is again an antipode, which is unique.

2.2.1. Compatible twisted stars on modules

Let V be again a righ#-comodule. Giverr a twisted Hopf star o we would now
like to use it to restrict the possible choices for a staon V, as it was done with Eq. (5)
in the pure Hopf case.

xp being twisted(x ® x)dr* : V — V ® F is no longer a right coaction, however,
T(*®*)r* . V > FRV isaleftone. Moreoveljd® S) (x*®*) 6r * = (x@*) (Id®S) éR *
is again a right coaction. Consequently, we may require

(d® $)0r(z) = Br2)", z €V, (11)

81t could even be written asx = *gpA at the expense of using a flipped definition of the star on the tensor
productxop(f ® &) = g* ® f*.
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or the following dual expression for the corresponding actioW ain the modulée/:
hez¥ =[(Sh* > Z]%, zeV. (12)

Notice that this condition looks formally like (6).

2.2.2. Compatible twisted stars on module-algebras

If we now letV to be anF-comodule-algebra (we then calhif rather tharV), it happens
that (11) is not a reasonable condition anymore, becadseS)Jdr+ and«Sr have different
homomorphism behavior. It may also be said &t S)(* ® *)Sr* iS not an R-coaction
on an algebrabut only a coaction; it does not preserve the producin

As t(* ® *) 6r * is a good homomorphism, the way out to constrajp is to choose
someotherleft algebra-coactiod,. on M and impose

SR(Z*) = (BL2)™, ze M, (13)

where now the stakop on the right-hand side includes the tensorial flip @® M it is

given byxop(f ®2) = 2*® f*,z € M, f € F). Remark that for many interesting cases we

have both natural left and right coactions; this is for instance the case for quantum planes.
The dual condition involves the left and right actionsfbfon M which are dual tér

ands, they are, respectively, denoted bynd«. It reads

Fah=[h*>z]", heH, zeM. (14)

2.2.3. Example of the reduced 82, C) atg"V =1

Twisted Hopf stars otF andH

On both the reduced and unreduc®id (2, C), the twisted stars are essentially the fol-
lowing® (i.e., up to automorphisms):

a*=a, b* = =c, c* = +b, d*=d. (15)
So we have two of them, and the corresponding dual twisted stars are given by
Xt =+X_, X* =4X,, K*=K1 (16)

Thus we see that, wheris a root of unity, these twisted stars allow one to recoveStHg)
(+ sign) andSW(1, 1) (— sign) real forms, something that would be otherwise forbidden
with atrue Hopf star operation.

Compatible star on the quantum pland

Onthe quantum plane there is, again up to equivalence, only one star structure compatible
in the sense (13) or (14) with each of the twisted stars (15) or (16). These twisted stars are,
respectively, given by

x*=x, v = +y. a7

° The operation defined on generatorsdiy= d, d* = a, b* = +b andc* = +c¢ “almost works”, in the sense
that it defines a twisted star L, (2, C) but it is incompatible with the determinant condition definBig (2, C).
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2.3. Stars and tensor products

2.3.1. Tensor product of matrices
If

a b A B
n=(: 4) (¢ 5)
are two matrices witimon-commutativentries belonging to a rinf§, then it is standard to
define their tensor product as

aA aB bA b

aC ab bC bD
cA cB dA dB
cC cD dC dD

me M=

We now define a different tensor produgtsp, by

Aa Ba Ab Bb
Ca Da Cb Db
Ac Bc Ad Bd|’
Cc Dc Cd Dd

M®opm =

the difference being that now the matrix which determines the coarse structure of the
tensor product is the second one. It is clear and well knownnh& M # M ® m,
independent of whethd?® is commutative or not. However, we see that wifeis abelian,
m®M = M ®qgpm. The previous calculation tells us how to modify this result wBesinot
commutative: callind3°P the same ring witloppositemultiplication (so that .qpa = a.A,

for example), we obtain

m(B) ® M(B) = M(B°P) @opm(B°P),

where the notatio (B°) ®pm (B3°°) means that we first take the opposite tensor product
of the two matrices and subsequently we multiply the matrix elements in the opposite order.

Suppose in addition that the rirtgis endowed with a star operatian and call T the
conjugation of matrices witl$-entries. In the case of 2 2 matrices, this reads

a b T L fa" c*
c d) \b* d*)’
So defined T is antimultiplicative. Moreover, direct calculation shows that

WhenJ is commutative, the previous right-hand side can be written simpbyTag) M7
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2.3.2. Tensor product of representations

Now let A be an algebra. Take andp» to be two representations dfin vector spaces
V1 and V,. Then, once bases are chospia) and p2(a), with a € A, are two matrices
with commutative entries.

Itis clear thajp1 ® p2 is arepresentation of the algebt® A, indeed, withh ®b € AR A,
we have

[p1® p2l(a @ b) = p1(a) @ p2(b).

However, this is not a representation4f unless we have a coproduct (algebra homomor-
phism) fromA to A ® A: using

acA— Aa=a1Qarc AR A,
one definep1 ® p2 as a representation of by setting

[o1 ® p2]la]=[p1 ® p2](Aa).

If Ais aHopf algebra, we are in such a situation. This is what we assume from now on.
Now, suppose thatl has a star operation, and thiat, 1), (o2, T) are star representations
of this Hopf algebra on modulég, V» (each one endowed with a scalar product for which
the adjoint is denoted by t). So, we have
p1w®) = (1)’ and pa(u®) = (o2,

We shall now suppose that the star is, somehow, compatible with the Hopf structure. We
shall discuss the Hopf star and twisted Hopf star cases.
We first suppose thatis a Hopf star. It then commutes witk, and
[p1 ® p2lla*] =[p1 ® p2l(Aa™) = [p1 ® p2](xAa) = [p1 ® p2](a] ® a3)
= p1(a}) ® p2(a3) = (p1(a) T ® (p2(a2) T = (pa(an) ® 2t
— ([p1® pl(@r ® a2) = (o1 ® p2l(Aa)T = (o1 ® pollal) .

Therefore,o1 ® p2 is also ax-representation.
We now suppose thais a twisted Hopf star. It no longer commutes wilbut intertwines
it with the opposite coprodua®®. In this case,

(01 ® p2lla™] =[p1 ® p2](Aa™) = [p1 ® p2] (xA%a) = [p1 ® p2](a5 @ aF)
= p1(ad) ® pa(a®) = (p1(a2) T ® (p2(a)T = (p1(a2) ® patar))T
= ([p1 ® p2](a2 ® 611))T =([,® ﬂ)z](AOpa))Jr # (1 ® pz][a])T.

Thereforep1 ® p2 is not ax-representation for a twisted However, we have the possibility
of defining “another” tensor product of representatiéﬁ$alled®op, as follows:

[p1 ®op p2llal=[p1 ® p2](APa).

10when A is quasitriangular, we recall that the two coproducts are related B matrix as follows:A%(a) =
RA(@)R™L.
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With this notation at hand, we can write

[p1® p2lla*] = ([p1 ®op pallaD) .

For this reason, “true” Hopf stars are usually preferred in mathematics, as the category of
*-representations is closed under tensor product. Another possibility, the one employed in
CFTs, is to truncate tensor products (see Section 5). Star representations are closed under
this truncated tensor product for both types of stars.

2.3.3. Hopf action on vectors with non-commutative elements

We now suppose that andp, are no longer complex matrices but matrices with elements
taken in a star algebrd. We still assume that we have a left action, in the sen&ab) =
pi(a)p; (b), but this is not a representation in the usual sense. As before we assume that
A is endowed with a star operation and tliat, T) are star representations, in the sense
pa®) = (,o(a))T, where T transposes the matyixa) and takes the conjugate () of
each element.

If we suppose that 4 is a Hopf star, then a direct calculation shows that

[p1® palla*] = (10> ® pPlLa]) T

Usually, forB = C, we havep®P = p, but this is not so in general; the upper index “op”
in p°P(a) reminds us that we should use the opposite multiplicatios @fhen making
product of matrices such a8P(a).

If we take instead a twisted Hopf star, the conclusion is now

[p1® p2lla*] = ([p%° ®op pPlLaD) .

3. Invariant scalar products
3.1. Compatibility with Hopf stars

Defining the notion of an invariant scalar prod@ct-) on a representation spateof
a quantum grougH is not as straightforward as in the classical case. We want the scalar
product to commute with the action of the Hopf algebra in the appropriate sense. However,
in order to get a relation which needs to be checked only on the quantum group generators,
we want this condition to be a (linear) homomorphism in Hhesariable. Given that the
scalar product is antilinear in one of its variables, there are two ways of achievintf this,

ez, w)=((xSh1) >z, ho>w) (18)
or
eh)(z,w) = ((S*xhy) >z, ho>w). (29)

We refer the reader to [12] for more detailed discussion.

111n the “classical case” (real form of some Lie algebra), both formulae tead> w) + (h > z, w) = 0.
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As the Hopf star does not commute with the antipode, skhee= x S, (18) and (19)
are, in general, two different conditions.

For the scalar product to be invariant in the sense of Eq. (18), one only needs the quantum
group action to be given by-arepresentationt?

(hez,w) = (z, K" > w). (20)
Notice that (20) implies (18) but not conversely. In the same way the alternative requirement
(hez,w) = (z, S2(h*) = w) implies that condition (19) is satisfied. However, in our
examples, we will choose to work with-representations, and therefore, with invariant
scalar products in the sense (18).

Assuming a hon-degenerate pairing betwgesind its duaF, and extending the notation
(-, -) to the following F-valued sesquilinear map an® F:

(U®f3w®g):(v’w)f*ga vawevv f7g€F9

we may write the previous equations in the dual picture in a very simple way. The first
invariance condition reads

(brv, drw) = (v, w)1F,
whereas the-representation requirement (20) reads
(v, Spw) = ((iId @ S)Srv, w).

Again, this latter requirement implies the former.

Now, let{v;} be a basis of the vector spakgand callGjj = (v;, v;) the corresponding
metric. Moreover, define the matrix @f € H in such a basis byt & v;=||zljiv;. From
Eq. (20) it is now trivial to get the matrix identities

TG = Gin, (21)

where T denotes the transposed conjugate matrix. In particular, for an orthonormal basis
this reduces tda|| T = [|4*].

3.2. Compatibility with twisted Hopf stars

The previous discussion (Section 3.1) does not use the fact that the chosen star should be
a “true” Hopf star operation; therefore, the same invariance conditions (18) and (19) still
apply in the twisted case. However, néw = xS, so that both conditions coincide.

The invariance requirement s still automatically satisfied if the representatidmatier
study is as-representation (formula (20)). However, now the dual formulas are slightly
different due to the absence of the antipode in the duality (9). The scalar product will be
called invariant if

((d® S)dr v, Srw) = (v, w)lF,

12| the action ofk is implemented by a linear operatofz] on V, this condition simply reads[/*] = (p[h])T,
where 7 is the usual adjoint operator.
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and the (co)representation will bexgco)representation if
(v, Srw) = (6rv, w).
Selecting a basis df we can write, exactly as in the untwisted caHﬂLTG = G| h*| for
anyh € H.

3.3. Quantum metric and quantum symplectic formb(2, F)

Untwisted case
The g-deformed symplectic form in two dimensions (one may call it gheeformed
epsilon tensor) is given by the matrix

. 0 q’l/z
Y= .
(—q1/2 0

In fact thex-representation condition implies for the true Hopf star case the equation
tTsr=%

Here,

a b
T=
(22)
is the multiplicative matrix of generators of the quantum function g®ug2, C), and the
T operation corresponds to applyirgo the elements and transposing the matrix:

. (a* c*
TT:<b* d*).

Notice that the above equation is different from (21) as there is a duality involved, there
h e H, ||h|lj € C,whereas her&; € F. Using the star (7) corresponding$a, (2, R) and
fixing a global factor by requiring hermiticity &£, we finally obtain the “invariant metric”
given above.

Twisted case

Now, as the duality between the star on a Hopf algebra and its dual differs from the one
in the untwisted case, therepresentation condition implies the relation

sHisr=13,

whereS is the antipode. Taking the twisted conjugacy= a, b* = +c¢, ¢* = +b and
d* = d, we get the metric

(1 0
EjE_(o il)’

as we would expect in a (twiste&)J(2) andSU(1, 1) case, respectively.
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3.4. Invariant scalar products fok endowed with a Hopf star

3.4.1. Invariant scalar products on the indecomposable representaticgis of

This was worked out in Appendix E of [13]. Here, we repeat the expressions for the
matrices of scalar products just for completeness and to ease the comparison with the
twisted case. Technically this is done by solving the set of linear equations (21) for the
coefficientsGj takingh = X+ andK, and imposing hermiticity of;. Each entry in the list
below corresponds to an indecomposable representation, remembey; tiapfjective
and irreducible, whereag & and Ge are projective indecomposable (with corresponding
irreducible representations of dimensions 1 and 2, respectively). We only single out the

following salient features (notice that is always given up to an overall normalization
factor):

e 3y we get
G=|1 0 1 0 and o =(++ ).

The index ofG (maximal dimension of each of the two maximally isotropic subspaces)
is therefore 1, and the Witt decomposition reads 3 + 1+ 1.
e Bo4g: With 8 € R we have here

0 0 0 g 00O
0 0 —¢g 0 0O
0 ¢ 0 0 0 O .
G= q2 0 0 0 0 O Dlag(l, 1,-1-1 Aty Ao),
0 0 0 08 1
0 0 0 0 1 0
with A+ > 0,A_ < 0. G is neutral, as its signatureis= (+ + + — — —). The index

of G is 3 and the Witt decomposition reads-63 + 3.
e Sodq: takingB, y € R, g € C,

0 0 iqy g O
0 0 —q% igB 0

G=|-i¢%r —qg 0 0 0| ~Diag(is, —Aq, A, —A_,0),
g —i¢g’6 O 0 0
0 0 0 0 0

ando = (++ — — 0).
e 3pdg: Now,

0 ig O

G=|-ig?> 0 0 and o = (+— 0).
0O 0 O
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e 6Bgye the metric should bes( € R)

0 0 g8 —-ig 0 O
0 0 —-ig O 0 O
B —ig2B ig?2 0 0 0O O
o ig? 0 0 0 0o oy’
0 0 0 0 0 i
0 0 0 0O —-i O
with a signaturer = (+ + + — — —) for any 8. As in the §4q case,G is neutral with

an index of 3, and the Witt decomposition reads & + 3.
e 4o havinga, B € R, andg € C, we may write

0 0 0

0 0
8
g B
Now, its signature obviously depends on the parameters.

o 3ave here we have simplg = Diag(0, 0, 1), ando = (+00).
e 2qve iN this case,

_ 0 g . _
G_<—iq2 0) Diag(1, —1).

O O O
O O oo
Q

3.4.2. Invariant scalar products oM

It can be seen that fa¥ = 3, ¢° = 1, the reduced quantum pland, a module-algebra
for #H, is isomorphic as an algebra to the matrix algelf&3, C), whereas as a vector
space splits into the sum of thre@equivalenindecomposable representations, namely
M ~ 3irr ® 3eve ® 3odd-

Actually, this feature can be generalized fordlbdd,¢¥ = 1. The corresponding quan-
tum plane (which is now isomorphic withf (N, C)) splits into the sum oV unequivalent
indecomposable representationstaf One of them is the irreducibl®i,, and the others
are analogous to the “intermediate modules” that appear within each lattice of submodules
associated to the othéf — 1 PIMs of . This property was proven in [21].

A word of warning seems to be necessary here: the algeionég, C) plays an ubiquitous
role here. Indeed, on one hand it is isomorphic with a simple subalgelsa(ete the
structure of the regular representation given in Appendix A). As such, its underlying vector
space splits into a sum &f subspaces carrying equivalent representations (all equivalent to
the Nir), appearing in the decomposition of the regular representation in PIMs. In this way
M (N, C) appears as an algebra and as a module, but not as a module-algebra (considering
Z,W e M(N,C) Cc HandX € H, in generalX(ZW) # (X1Z)(X2W)). On the other
hand,M (N, C) is also isomorphic with the reduced quantum plane, and as such it is a
module-algebra, but not a subalgebrgbénymore. Its decomposition under the action of
H is now more subtle, since it reads(N,C) ~ Njyr ® N1 O No @ --- D Ny_1.
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Because of this last result, one could be tempted to think that the most general scalar
product on the reduced quantum plakeis simply given by the direct sum of its restric-
tions to the modules;3, 3eve and 34q that are already known, but it is not so. Indeed,
non-diagonal blocks may appear as we can have non-zero projections amongst vectors of
different indecomposable representations.

M being not only a module but also a module algebra, we impose condition (20) for the
left action of M on itself given by multiplication as well. This singles out a unique invariant
Hermitian form(, ) up to an overall scaling factor. Its structure was studied in Section 5.5 of
[13] and goes as follows: the only non-zero scalar products are those of the'typex” y*)
withr 4+ p = s +t = 2, and they are all determined by settiixg, xy) = 1. The signature
of this metric is(5+, 4—), so its index is 4 and the Witt decomposition reads 8+ 4+ 1.

In the basig{x2, xy, y2}, {x, v, x2y2}, {1, x2y, xy?}}, the scalar product can be written as

B 0 O
G=|0 0 B,
0O B O
whereB is the 3x 3 block:
0 0 42
B=|0 1 O
g 0 O

The restriction of this scalar product to the subspagec8incides with what was already
obtained before, a form of signatu¢2+, 1—). The restriction to the subspacege3and
3o0dd is actually totally degenerate, so the conclusion we findf¢rdoes not contradict
what was already obtained fog3 and 34q (just choose an overall scaling factor equal to
0 in the latter cases).

3.4.3. Invariant scalar products on the regular representatiof/of

One should not be tempted to think that the most general Hermitian scalar product on
H(N = 3)itselfis simply given by its restrictions to the direct Sum;3[8b 2[6eve] D 1[60dd]
since we may very well accept “off-block” components. As a matter of fact, the constraints
in this case are rather weak: for any given star, any Hermitian form suclXh&t Z) =
(Y, X2) will work, but such a form is totally determined by the vaIues(thiX’i K°).
Since we havev terms, we see at once that the most general invariant scalar prodict on
will depend onV?3 parameters (real ones, due to the hermiticity of the scalar product). If one
really wants to obtain an explicit expression for the possible mefiissin the casev = 3,
the thing to do is to write explicithX - andK as 27x 27 matrices (this is numerically easy,
once we know how to write these generatorddii3, C) @ (Ma2j1(A?))o; this was done in
[22] and recalled in [13]) and solve the Egs. (2[11),||TG = G||h*|, for the coefficients
Gijj, whereh = X andK. One can then check that this set of equations indeed lead to a
solution depending on 27 parameters.

Because of this pretty big number of free parameters, the signature can be rather arbitrary.
This is a slightly disappointing result since we are looking for some kind of constraint(s)
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that more or less fix the Hermitian form. It would also be nice if the structure of this scalar
product could somehow reflect the algebraic structuf d@self. As we shall see later, this
goal will be achieved by the choice of a particular scalar product that we call the “Hermitian
Killing form”. Yet another interesting scalar product on the regular representation can be
defined by using the existence of left (or right) invariant integrals (see Section 4.2).

3.5. Invariant scalar products fok with a twisted star

3.5.1. Invariant scalar products on the indecomposable representatiois of

As itwas done for the true Hopf star in Appendix E of [13], we here show the most general
metric on the vector space of each of the indecomposable representatiinssoig the
twisted stars (16). Since we have two possible choices;thsgns below correspond,
respectively, to thet possibilities defined in (15)-(17). We restrict the inner product to
be a quantum group invariant one, as defined in Section 3.1. On each representation space
we use the basis obtained from appropriate restrictions of the natural basis (“elementary
basis”) associated with the regular representatioi @fs given in Appendix A. For each
indecomposable representation we give an explicit expression of the most general covariant
metric in this particular base and we calculate its signature.
e 3jir: up to a real global normalization the metric is

G = Diag(1, 71, 1) withsignatures = (+ + F).

e Bpgg: Now we get the metricq € R)

1 0 0 000
0+ 0 0 0 0
c_|0 0o 1000
00 0 100
00 0 0p8 1
00 0 010

A change of basis tells us that ~ Diag(1, 1, +1, +1, A4, A_), with A, > 0,A_ < O.
Thus, the signature is

o=H++E£+-).

e 504d: If a, B € R andg € C, we may write the metric as

a g O 0O O
g B 0 0 O
G=|10 0 +a g O
0 0 g £8 O
0 0 O 0 O

Given thatG ~ Diag(A1, A2, £11, +A2, 0), with arbitraryi; € R, its signature may be
anything betweesr = (+ + + 4+ 0) ando = (— — — —0).
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e 3u4q: here
G =Diag(1,+1,0) and o = (+ £ 0).

e Beye: UP to @ normalization the metric can be written Ass(RR)

g1 0 0 0 O
10 0 0 0 O
G_|0 0= £ 0 0
001 0 0 O
00 0O O F1 O
00 0 0 0 -1

The signature is clearly
o=H+F - —-).

e 4qye in this case the result coincides with the one obtained using the normal Hopf star,
as we get the metriex( 8 € R, g € C)

0 00O
0 00O
0 0 o ¢
0 0 g B
The non-null block inG is an arbitrary Hermitian matrix, therefore the signature is not
fixed.
e 3eve as in the untwisted case, here we find simply

G =

G = Diag(0, 0, 1).
e 2qve this irreducible representation has the metric
G = Diag(1, £1).

Notice that a positive definite form is obtained for the twisted Hopf st&&PR) type.

3.5.2. Invariant scalar product oM

A priori, one could think that the discussion goes along the lines of Section 3.4.2 and that
nothing much should be changed. This is almost so, in the sense that invariance implies that
the onlypossibly non-zerscalar product of typél, z) is (1, x2y?). However, we shall show
that this quantity vanishes as well (the proof uses the left actidghaf M as discussed in
Table 1, Section 4.4 of [13]). Indeed

(1, x2y%) = (¢, y?) = ¢ 7122 Ky?) = ¢ 1K *x?, y%) = ¢ HK 712, y?)
=q7 Y@@, y?) = ¢%¢71(x2%, y?) = q(1, x*y?)

Hence(1, x2y?) = 0, and we see that the bilinear form obtained\dris totally degenerate.
This result contrasts drastically with the one obtained in the untwisted Hopf star case.
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3.5.3. Invariant scalar products on the regular representatiof/of
We refer to Section 3.4.3 for the general discussion and to the next section for a study of
very specific scalar products on this representation space.

4. Scalar products on the left regular representation of a Hopf algebra
4.1. The Hermitianized Killing form

As is recalled in Appendix B, in the case of Hopf algebras there is still a notion of a
Killing form, which generalizes this particular bilinear form found in the case of Lie groups
and algebras. Moreover, it is also invariant under an adequate generalization of the adjoint
action of a group on itself, now a left action of a Hopf algebra on itself.

This Killing form (., .), is neither symmetric nor Hermitian (actually we did not use
any star in its definition), but, given an arbitrary star operationHanwe now define a
sesquilinear form ol x H by!3

(X, Y)=(X*,Y), = Tr(X*Y), X,YeH. (22)

This new form is obvioushyH -invariant — in the sense of (20) — under the left action of
H on itself given by simple multiplication as

(XY, Z2) =Try(Y*X*Z) = (Y, X*Z). (23)
The “symmetry” property of the Killing form (B.1) gets traduced now in
(Y, X) = (X*, §2(Y")).

In addition, if the star operation is a true Hopf one, the invariande ¢f under the adjoint
action (B.2) implies that

(adsz)«(X), adz,(Y)) = (X, Y) €(2). (24)

This is so becaus@fi sz« (X)]* = adz(X™*) for a Hopf star. Note that both properties (23)
and (24) are invariances of this Killing scalar product in the sense of (18), but with respect
to different actions. Actually, we also have for this actiom-eepresentation, as it is true
that

(adz(X),Y) = (X, adz=(Y)).

Finally, when the star involved in this definition is a Hopf star, the resulting form is —
or can always be chosen to be — Hermitian; we call it the “Hermitianized Killing form”
or the “Killing scalar product” (we will see later that this is not the case when one uses a
twisted star). Indeed, as we are working with-eepresentation, Th[] = Tr[h], h € H.
Therefore,

(X,Y) = Tru X*Y) = Tr(Y*XU) = Tr(u*Y*X),

13 As for the Killing form, there is always an implicit choice of representatioiighere the left regular one.
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and
X,Y)=(¥,X) (25)

if u* = u. Using the notation of Appendix B, we know thsf(k) = uhu~! implies, for

a Hopf star,S%(h) = u*h(u*)~1. Both equations together tell us thatly* is a central
element which, being a matrix on a representation space, should be proportional to the
identity. Moreover, the proportionality factor must be a phasé)t = «), and this may
always be absorbed into have an Hermitian form.

4.1.1. The Killing scalar product fo¥ (Hopf star case)

We have just defined a particular scalar product based on the Killing form on the regular
representation of a quantum grofip We analyze here the case of the finite Hopf algebra
H, taking N = 3, and we choose a Hopf star operation. Then

(X, V) =Trg(X*Y) = Tr(K1X*Y), X,Y e H.

In this case, the structure of the correspondingx227 Hermitian matrixG in the
PBW-basis is not very transparent and we shall not give it explicitly, although its signature
can be read off easily. However, the expressiorzafh what we called the “elementary
basis” is quite remarkable. Here are the following:

e lts restriction to theM (3, C) block, with basis ordering

{E11 E12 E13 E21 E22, E23, E31, E32, E33},

reads
0O 0 0 00O 0O O 0 gq¢1
0O 0 0 000 0 —t o0
0 0 0 0 0 0g4? o 0
0 0 0 0 0-1 0 0 0
3o o 0 0 1 0 O 0 0
0O 0 0-10 0 O 0 0
0 0 g 0 0 0O O 0 0
0O -4 0 0 0 0O O 0 0
g 0 0 0O O O O 0 0

e Its restriction to the subspa¢d 11, A12, A21, A22} of the(Mz‘l(AZ))o block reads

0 0 0

q
0 0 —¢ O
0 —¢t 0 o0

gt 0 0 0

e lts restriction to the subspa¢a 33} of the(Mz\l(AZ))o block reads

6(L).
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All other entries vanish. This is in particular so for the scalar products mixing the three
aforementioned subspaces. All scalar products also vanish between vectors belonging to
the 13-dimensional radical spanned by the generators

(B11, B12, B21, B22, P13, 013, P23, 023, P31 031 P32 032.

In other words( is completely degeneratédi in the direction of the Jacobson radical of
1, and itdoes not mix the different simple components of the semisimpl@/pat (3, C)®
M (2,C) & C. Moreover, we see at once th@trestricted to}{ is diagonal in the (hence
orthogonal) basis

(E11+ ¢ YE33 E124+ ¢ YE32 E134+ ¢ 1E31,
E21+ ¢ 1E23 E22: A11+ g 1A22 A12+ ¢ 1A21; A33},

where it actually reads
G = 3Diag(£1, +£1, +1, +1, 1; £2, +2; 1).

The signature of the restriction ¢f to H reads therefore a8+, 6-), but it is better to
write it (with obvious notations) as

BH+L -V HD]®[(+1, - & (+1, -] & (+1).

4.1.2. Incompatibility between a Killing scalar product and a twisted Hopf star

Here we can follow a discussion along the same lines of the last part of Section 4.1,
but now starting frons2(h) = uhu™?!, it is easy to deduce tha&f(h) = (u*)~thu*. Both
formulas together imply thaiu* is a central element, and this means that we will have
u* =cut+#u(c e H central).

Therefore, we cannot expect to have an Hermitian Killing scalar product if the star is a
twisted one. Having a true (Hermitian) scalar product is incompatible with the invariance
of the Killing form.

4.2. Scalar products related to invariant integrals

We first gather general facts and definitions about left- and right-invariant integrals on a
Hopf algebra. We then use these concepts — together with a star operation — to define a
particular Hermitian scalar product on finite dimensional Hopf algebras. All these notions
are illustrated with our favorite examplé.

4.2.1. Integrals
A left-invariant integral on a Hopf algebrd overC is a linear mapfl_ . H — C such

that
(id@/)oA:ﬂH/,
L L

14 The fact that the trace of the adjoint map vanishes on the radical, a result slightly weaker than the one reported
here, was separately observed by Kastler [16].
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wherel gz is the unit ofH andid the identity map inH . Therefore, for anys € H we have
(as alwaysAh = hy1 ® ho)

hlthzzﬂH/Lh. (26)

A right-invariant integral/, is defined in the obvious similar way.
Since, (or ) is a linear object, it can be identified with an elemept(resp.ir) of
the dualF of H. Such an element will therefore satisfy

AL =e(fHi

(orArf =€(f)Ar)forany f € F.

Like for groups, a Hopf algebr#/ is calledunimodularif one can find left and right
integrals which coincide =/, = /). Furthermore, such an integral is called a Haar
measure when it is normalizable and normalized, j'é1,) = 1 (in particular/ should
not vanish on the unit!).

We now go back to the example whekkis a reduced quantum enveloping algebra of
typeSL, (2, C) at a root of unity. It is easy to see that here the left and right integrals are
respectively given (up to an overall constant) by

/:(xﬁ—lxﬁ"lK)*,
L
and
/ _ (xNix N1kl
R

Here a particular vector space basis (PB{WiX’i K¢} ischosen irH and{(Xini K9*}
denotes its dual basis. In terms of element&pthe same left- and right-invariant integrals
on?H read

AL = (1~|—a—|—---+aN_1)bN_1cN_1, )LR=bN_1cN_l(1+a+...+aN_1).

These two integrals are not proportional and cannot be made edualtherefore not
unimodular and no Haar measure can be defined. Thefdof#H turns out to be unimodular
(see[23]), butthe corresponding integral is not a Haar measure because itis not normalizable
as it vanishes on the unit.

Further restricting now our class of examples to the @dase 3, itis interesting to decom-
pose the elements2 X2 K and X2 X2 K ~1 on the elementary basis defined in Appendix
A. They read, respectively, as

g2 0 0
0 0O 0
0 0O
—q61%2 0 0 ’
0 0 0 O

0 0 61p2
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and
g 0 O
0 00O 0
0 00O
—q%0%%%> 0 0
0 0 0 O
0 0 0192

On the other hand, using the PBW basis, the invariant intérah F can be expressed by
duality as the elememt=X2 X2 (1+ K + K?) € H.

4.2.2. Scalar product on the left regular representation

Using both a star operation (any) and an integralbrnwe now define a kind of Hopf
algebra analog of the familiar scalar product used to discuss square integrable functions in
usual complex analysis. We take

(X, Y)L,Rﬁ/L RX*Y, (27)

which is then automatically sesquilinear and invariant. In fact, by construction this scalar
product satisfies the-representation condition as

(ZX, Y) = (X, Z*Y).

Here, H acts on itself by left-multiplication, and the invariance is independent of the star
chosen (twisted or not).

Other properties of this scalar product will of course depend upon the kind of star used
in its definition.

The Hopf star case
e To have hermiticity of our scalar product we need only to check that

| x=] x
L.R L.R

as(¥,X) = [(X*Y)* and[ X*Y = (X, Y). Itis easy to see that the above property is
compatible with the left-invariance of this integral (contrarily to what will happen in the
twisted star case). Therefore, one needs to check this explicitly for each case, knowing
that a left (or right) invariant integral on a Hopf algebra is unique — if it exists — up to
a scalar multiple. We checked explicitly this property for the casH ef #.

o From the invariance property gf , one trivially gets

Tr(X,Y) = X1Y1(X2, Y2).

But this may also be interpreted — as happens with the integral — as an invariance with

15 Notice that on the groufis = {1, K, K2}, the integral is given b = 1+ K + K2.
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respect to the right action af:
X, Y)< f=€e()X,Y)=(X<(Sh), Y < f2).

This expression is the analog of (19) for a right action.

Recall that this is an extra invariance of the scalar product, as by construction it is
invariant under the left action df itself.

e In our example ofH, with N = 3, this Hermitian form expressed in terms of the
“elementary basis” defined in Appendix A gives a 727 Hermitian matrixGj; that
we describe now. Its restriction to the nine-dimensional subspace spanned by

{E11, E12, E13, E21, E22, E23, E31, E3p, E33}

reads
0O 0 0O 0O OO O 0 g1
0O 0 0000 0 —t o0
0O 0 0 0 0 0g4?' o 0
0O 0 0 0 0-1 0 0 0
o 0 00 1 0 o 0 0
310 0 0 -1 0 0 o 0 0
0 0 g 0 0 O O 0 0
0 -4 0 0 0 0O O 0 0
g 0 0 0O O O O 0 0

Its restriction to the &) + 2(1) = 10-dimensional subspace spanned by

{A11, B11, A12, B12, A21, B2a, Ao, Bop, Azs, B3z}

reads
0 0 0 0 00— —q 0 O
0 0 0 0 00-¢ O 0 O
0 0 0 0 ¢gg 0 0O 0 O
0 0 0 0 ¢q0 O O 0 O
1| o 0 gt g¢to0oo0 0 0 0 O
3| o 0 gt o0 oo o o o0 ol
gt ¢t 0 0 00 O O 0 O
gt o0 0O 0 00 O O 0 O
0 0 0O 0 00 O 0 -11
0 0 0O 0 00 O 0 1 d

Finally, its restriction to the eight-dimensional subspace spanned by

{P13, 013, P23, Q23, P31, 031, P32, 032}
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reads
0O 0 0 g0 O 0 O
0 0 —4q 00 O 0 O
0 ¢ 0 00 O 0 O
1l¢2 0 0 00 O 0 O
3o o 0 oo o o 1|
0O 0 O 00 O -10
0O 0 O 0O0-1 0 O
0O 0 O 01 0 0 O

All the other scalar products vanish.
First of all, we may notice at once that this Hermitian form is not degenerate (this
sharply contrasts with the Hermitianized Killing form which is degenerate along the

radical, as we saw previously). Here, the signatur@ s, 13—). The 27 eigenvalues
themselves read

HDo, (=Ds, (B2, (=B H2, (—=B)a, (B Hal,

wherep = 3(1+ +/5) is the golden number. It is interesting to notice that, although
non-degenerate, the restriction of this form to the+1 = 14-dimensional semisimple
part of H is positive definite (this part, isomorphic with the matrix algebfé3, C) &
M(2,C) ® C, as recalled in Appendix A, is spanned By and A).

The twisted star case

e Itis in general not Hermitian. In fact, if we now write down (26) fot and conjugate
that equation, we get

hz/.h?[:ﬂ/h*.
L L

If we assume thaf| n* = fL_h the above equation would tell us thit should also
satisfy the right-invariance condition, which will not be generally true. For instance, in
the case of{ we know that a biinvariant integral does not exist. To obtain an Hermitian
scalar product we could then add both integréls, Y)=(J, + [g)X*Y, but this one
would not have any extra invariance property.

e From the invariance property (j[ results

Ta(X,Y) = X5Y1(X1, Y2),

which shows a left—right mixed behavior.

e The example of, with N = 3, is not particularly enlighting since the obtained complex
bilinear form is not Hermitian but symmetric. A numerical study of this2Z7 matrix
in the elementary basis defined in Appendix A shows that it is not degenerate and that it
is “almost” diagonal, in the sense that the only non-diagéhaéntries ares (A11, B11),
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G(A12, B12), G(A21, B21), G(A22, B22) andG (Ass, Bsz) together with the correspond-
ing symmetric coefficients. We however stress again the fact that, using the twisted star,
the scalar product is not Hermitian.

To conclude, the twisted Hopf star case is rather bad in this sense.

5. Discussion

As it was mentioned in Section 1, the paramejethat appears in many integrable
and conformal models is often a primitive root of unity, and such values are generally
incompatible with the choice of a compact real form on the quantum groupSlike2),
for instance). For this reason the stars on “compact” quantum groups that one may define in
the context of spin chains, for example, are twisted. The discussion is however a bit subtle
and we want to make the following comments.

In the case of a spin chain of type€Xz for instance (see [14], for example), one may
start with theusualrotation group in three dimensions — or with its double cdv&(2) —
acting at each point of the chain. Another ingredient is given by the choice of some (unitary)
representation of this group, for instance the fundamemtal {/2). The Hilbert space of
the model is obtained as theh tensor product of this representation. The Hamiltonian
of the model is given by a sum of interaction terms indexed by a discrete label, each
term being itself built in terms of (Hermitian) Pauli matrices. This Hamiltoniamat in
general, invariant with respect to the rotation group since the physical system is clearly not
rotationally invariant. However, in some cases, one notices that the same total Hamiltonian
commutes with the generators of a (complex) quantum group, for instarisk2, C)). We
should stress the fact that generatorS\0§2) act on the Hilbert space in a way thatis “local”
(generators rotate the states independently at each point of the chain), whgsés C))
acts in a non-local way (this point of view was emphasized for instance in [24]). Notice
that hermiticity of the Hamiltonia— a Jones projector — is clearly a required constraint,
however, this property does not take place in a representation space for the quantum group
but in its commutant.

Both SU(2) and U, (sl(2, C)) enter the discussion of the model and both have two-
dimensional representations, but the two related concepts should not be confused. For
physical reasons, it is clear that the scalar product used on the Hilbert space of the model
should not contain vectors of negative norm; for this reason it should be a bonafide positive
definite scalar product. The same Hilbert space could also be built in terms of tensor products
of the fundamental representation of the quantum gigysl(2, C)), for g a root of unity;
indeed, two vector spaces ovEérof the same dimension are clearly isomorphic as vector
spaces. Nevertheless, in the usual construction the Hilbert space of the model acquires its
Hilbert structure from the scalar product chosen on representati@ig(@f, not from the
one chosen on the representations of the quantum group. Actually, the authors of the present
paper do not see why such a choice should be performed at all; they cannot exclude however
that it may turn out to be useful. What is in any case clear is that if one wants to choose
a scalar product on the fundamental representatidn, ¢¢l(2, C)) such that it will induce
the same (already given) positive scalar product on the Hilbert space of the model, one has
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to suppose that the quantum group is endowed with a star operation which is a twisted Hopf
star of SU(2) type.

We should mention the papers [5,6], where a general study of quantum symmetries in
guantum theory is done, and where twiceof twisted star operations is clearly made
right at the beginning. This was actually nothing else than a choice (related to a way of
defining a covariant adjoint for field operators), and it was subsequently discéetreat
this choice was not unique and that it would have been also perfectly possible to define
adjoints for field operators after having decided to use a “true” Hopf star operation.

In conformal theories, primary fields are associated with vectors of highest weight in a
representation of some affine algebra, and it was observed long ago that the fusion table of
such primary fields is identical to the Clebsh Gordan table describing the tensor products of
irreducible representations of some quantum group —the same quantum group also appears,
viaits 6j-symbols, in the equations describing the duality properties of the conformal blocks.
At this point, one should stress that the representations of the quantum group that appear
in the associated fusion table are not to be confused with the representations of the affine
algebra. The two structures, although related (in a way that is apparently not well understood
yet, see [25]), are quite distinct and the discussion involving the nature of the scalar product
to be used in a given representation space for the affine or Virasoro generators should not
be confused with the analysis of the scalar product(s) that one can define on the modules
of the emerging quantum group.

When the parameter is a root of unity, the representation theory is quite subtle since
indecomposable (but notirreducible) representations of the quantum group appear. Actually,
to obtain a physically meaningful state space one has to choose a so-called “truncated
tensor product”, by selecting only those representations for whicfrthece vanishes (one
can also use the formalism of quasiHopf algebras, see [6]). It is a fact that discussions
involving quantum groups in conformal field theories usually consitfarite dimensional
Hopf algebras (likeJ, (sl(2, C))), which are not “good” quantum groups whens a root
of unity since they are not quasitriangular in the usual sense. At the contraffynitee
dimensionalHopf algebras that one can obtain from those ones through division by an
(infinite dimensional) Hopf ideal are not semisimple but they are quasitriangular: they
possess (finite dimensionaR-matrices. The category of representations of these Hopf
algebras is not a modular category (tensor products of irreducible representations are not
necessarily equivalent to direct sums of irreducibles), but it is again possible to define
truncated scalar products in a very natural way. We conjecture that discussions involving
simultaneously rational conformal field theories and quantum groups should be done in
terms of such finite dimensional Hopf quotients of the usual quantum enveloping algebras
at roots of unity. A general study of these topics stays outside the scope of the present paper
but we hope that our contribution concerning stars (twisted or not) and scalar products,
together with selected examples involving finite dimensional Hopf algebra quotients of
U, (sl(2, C)) will be useful in this respect.

18 Unpublished addendum by the same authors. We thank G. Mack for this information.
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Appendix A. Structure of the reduced Hopf algebraH

Wheng is a root of unity gV = 1), the quantized enveloping algeblg (sl(2, C))
possesses interesting quotients that are finite dimensional Hopf algebras. The structure of
the left regular representation of such an algebra was investigated in [26] and the pairing
with its dual in [27]. We call{ the Hopf algebra quotient df,, (sl(2, C)) defined by the
relations

kN =1, x¥=o

andF its dual. The generators, X are chosen to obey the following commutation and
cocommutation relations:

Product
1
KX:=¢™X:K, [X{. X ]=—"2(K—K,
(g—q97)
KN =1, x¥=x¥=0 (A1)

Coproduct

AX =X, ®1+K® Xy, AX_=X_@K'+1®X_,
AK=K®K, AKl=k1g@k? (A.2)

It was showrl” in [26] that the non-semisimple algelskais isomorphic with the direct
sum of a complex matrix algebra and of several copies of suitably defined matrix algebras
with coefficients in the ringsr(2) of Grassmann numbers with two generators. The explicit
structure of those algebras (for aiy, including the expression of generators themselves,
was obtained by Ogievetsky [28]. Using these results, the representation thefgrioof
the caseV = 3 was presented in [22].

Wheng" = 1 with N odd,’® we have an isomorphism between tNé-dimensional
algebra?{ and the direct sum

H=My®My-11(A%)0 & (Mn—_22(AD))0 @ --- & (M(y+1)/21(v-1)/2(A))o,
(A.3)

17 alekseev et al. [26] actually consider a Hopf algebra quotient definel®y = 1, XY = 0, so their algebra
is, in a sense, twice bigger than ours (see Appendix C).

18\When N is even withN' = N/2 odd, k"', X¥' are central and one may take the quotientisy = 1,
Xﬁ' = 0; the algebra so obtained is isomorphic withWhenN’ = N/2 is even the structure is quite different,
and we do not study it here (see [28]).
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where
1. My isanN x N complex matrix,
2. an element of tha/y_»> block (for instance) is of the kind:

[ ] [ ) [ ] O (@)
[ ) [ ) [ O (@)
: (A.4)
[ ) [ ) [ 0] (@)
(e) (@) @] [ ] [ )
(e) (@) O [ ] [ )

where we have introduced the following notatiers an even element of the ririgr(2)
of Grassmann numbers with two generaté?s,e., of the kind:

o=+ 616>, «,p €C,
o is an odd element of the rin@r(2), i.e., of the kind:
o=1y01+6862, y,8¢eC,

etc.

Notice that? is not a semisimple algebra: its Jacobson radifak obtained by
selecting in Eq. (A.3) the matrices with elements proportional to Grassmann variables.
The quotient{/J is then semisimple . but no longer Hopf!

Projective indecomposable modules (PIMs, also called principal modulet) foe
directly given by the columns of the previous matrices.

3. From theMy block, one obtain®v equivalent irreducible representations of dimension
N that we shall denote b¥ij. These representations have vanishjrgjmension.
4. From theMy_p, block (p < N — p), one obtains
4.1. (N — p) equivalent indecomposable projective modules of dimensiénhat we
shall denote byPy_, with elements of the kind

(e@---000--:0). (A.5)
[ A —
N—p p
4.2. p equivalent indecomposable projective modules (also of dimensidrtitzat we
shall denote byP, with elements of the kind
(co++c0@---0). (A.6)
[ — A —
N—p p
These PIMs have alsg-dimension equal to zero. To each PIR] is associated an
irreducible representation of dimensigrobtained by quotienting; by its own radical.

These irreps have non-vanishiggdimension, and are in one-to-one correspondence
with the so-called type Il irreducible representationg/gfsl(2, C)).

19Remember that? = 2 = 0 andé16, = —601.
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Other submodules can be found by restricting the range of parameters appearing in the
columns defining the PIMs and imposing stability under multiplication by elemerfs of

In this way one can determine for each PIM the lattice of its submodules. For each PIM of
dimension 2V, one finds totally ordered sublattices with exactly three non-trivial terms: the
radical (here, itis the biggest non-trivial submodule of a given PIM), the socle (here itis the
smallest non-trivial submodule), and one “intermediate” submodule of dimension exactly
equal toN. However, the definition of this last submodule (up to an equivalence) depends
on the choice of an arbitrary complex parameteso that we have a chain of inclusions

for every such parameter. The collection of all these sublattices fully determines the lattice
structure of submodules of a given principal module.

We are interested in this paper in Hopf stars (twisted or not) and invariant scalar products
for representation spaces #f. To ease the presentation of the results, it is better to limit
ourselves to the cagé = 3 but the overall picture should be clear. From now on, we take
N =3.

In the caseg;® = 1, # is a 27-dimensional Hopf algebra isomorphic with(3, C) &
(M21(A?))0. Explicitly,

e11 e12 e13 a11+ B1101602 a2+ B126162  y1361 + 81302
H= eo1 €22 e23 | @ | a1+ B210102 o2+ Bo2b102  y2301 + 82302
e31 e32 e33 y31601 + 83102 y3201 + 83202 @33 + B330162

(A7)

All entries besides thé’s are complex nhumbers (the abogesign is a direct sum sign:
these matrices are% 6 matrices written as a direct sum of two blocks of size 3).

The semisimple part,, given by the direct sum of its block-diagorfindependent

parts, is equal to the 9 4 + 1 = 14-dimensional algebrdl = M3(C) & M»(C) & C.
The radical (more precisely the Jacobson radi¢adj # is the left-over piece that contains
all the Grassmann entries, and only the Grassmann entri¢é,=sd{/J. The radical has

therefore dimension 13.

PIMs are given by the columns of the previous expression. We see that the left regular
representation splits into a sum of three equivalent three-dimensional projective indecom-
posable representations that we cgjl @hey are also irreducible) given by the columns of
M (3, C), two equivalent six-dimensional projective indecomposable representations that we
call 6eye given by the first two columns c(1M2|1(A2))0 and one six-dimensional projective
indecomposable representation that we cgll§iven by the last column (If[\/12|1(A2))0.

The left regular representation can therefore be decomposed as follows:

3[3irr] @ 2[6eve] ® 1[6oddl-

All these projective indecomposable representations have zero quantum dimension.
Irreducible representations are obtained by taking the quotient of the projective inde-
composable ones by their respective radical (killing the Grassmann variables). One obtains
in this way the irreducible representatiop 3hat we already had, a two-dimensional ir-

reducible 2, (quotient of &ye¢) and a one-dimensional irreduciblg, (quotient of §qg).
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Notice that 2, and %, do not have vanishing quantum dimension, whereas as we already
mentioned the ;3 is special in this respect, since it is also one of the PIMs.

In order to discuss the results it is convenient to select a particular linear baKis in
Actually, three of them turn out to be quite useful. The first one, the “PBW-basis”, is given
(up to ordering) by the set of monomiat$ X’ k<.

The second one, that we shall call the “elementary basis”, comes from the previous iso-
morphism withM (3, C) ® (M2|1(A2))0. We call Ej the elementary matrices corresponding
totheM (3, C) block (they correspond to tleg coefficients of (A.7)). As fortheMz‘l(Az))o
block, we call4j, Bjj, Pj, Qjj the elementary matrices corresponding todfesj, i, dij
coefficients, respectively. Clearly, this set of elementary matrices is also a basiarad
it is not too difficult (though it is cumbersome) to express each of its elements in terms of
the PBW-basis.

The last useful basis, directly related to the elementary basis, is defined in Section 4.1.1,
it has the property of diagonalizing the “Hermitianized” Killing form.

Appendix B. The Killing form on a quantum group
B.1. The adjoint representation of a quantum group

If X € H, then the adjoint mapdy : H — H is defined by
ady (Y)=X1Y S(X>2).

Notice that this definition generalizes both the notion of adjoint representation for groups
(whereAg = g ® g andS(g) = g~ 1, g being a group element) and for Lie algebras (where
AX =X®1+1® X andS(X) = —X, X being a Lie algebra element).

The representation ad is a left actidiis indeed easy to show that

adxy(Z) = ady (ady (2)).

Actually, it is also possible to define “another” adjoint representation by replacing the
previous definition bys (X1)YXp; this is not a left action but a right one (so it can be called
the “right”-adjoint action).

One could be tempted to consider the right acSoA(X1)YX or the left actionx1YS ™t
(X2) but these actions are not compatible with the algebra structure (indeed acting on the
unit with some element would not gives (X) 1). Moreover, itis not very useful to consider
the left and right action&2YS 1(X1) and S~1(X2)YX since, although compatible with
the algebra structure, they are essentially equivalent with the previously given definitions
for the left and right adjoint actions. In fact the antipode intertwines both maps.

Inthe sequel, we shall only use the first definition of the adjoint action, we should therefore
remember that it is a left action.

The adjoint action is compatible with the algebra struct®ae indeed shows that

adx(YZ) = adxl(Y) adxz(Z).
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Notice that the two given properties allow one to easily compute the explicit expression for
the adjoint representation once it is known on the generators.
Case oft{. In this case, one obtains easily the adjoint action on the generators:

adg (K) = K, ady (K)=(1-q¢ %X_K? adg (X_) = ¢ %X_,

1- K2
ady (X-)=0, adg(X4)=¢°Xy,  ady (Xy)= pp—_
ady, (K) = (1—¢)X, K,  ady,(X4) = (1—g¢HXx2

K-kt
adx+(X_) =1~ 4_2)X+X— + W

B.2. The quantum trace

If H is a quasitriangular Hopf algebra, with an univerBamatrix R, there exists in it a
special element

uo=m|[(S ® id)R21].

Such an element is invertible and allows to write explic§f/as an inner automorphism
(see [2] for a proof and a more general discussion):

S2(h) = uohyyt, Vh e H.

On the other hand, givep a representation off on a spacé/, the quantum trace is
the map defined by the following chain of isomorphisms, all of them commuting with the
H-action:

EndV) - VV*—> V*e V*— C.

Remember that given a representatiorvgone obtains naturally arepresentation onits dual
spaceV*, by making use of the antipodex v* is such thatisv*, w) = (v* S(h)>w) Vw €

V). The non-canonical isomorphisih >~ V** given byv — p(ug)v is needed in order

to make the chain commute with the action of the quantum group. Therefore, the resulting
expression for the quantum trace in terms of the ordinary operator trageon

Tr,(X) = Tr(p(uo)X), X € End(V).

As ug has no reason to be group-like, this trace is in general not multiplicative on tensor
products of representations &f, but can be made so # is a ribbon Hopf algebra. In

this case there exists an invertible and central elemeatH such thatw? = uoS(uo),

S() = v, andAv = (R21R12) "1 (v ® v). Now ug may be replaced in Jrby u=v~1uo,

which is group-like. It is still true thas?(k) = uhu™1, because is central.

In the case off = H we findu = K~ (andv = 1).
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B.3. The Killing form
Let X, Y denote two matrices (witG-number entries!) representing elemekitandY of
a Hopf algebrad in some representation (we keep the same notation, here, for elements of

the Hopf algebra and their matrix representatives). The Killing form in this representation
is defined by

(X, Y)u=Tr, (XY) = Tr(uxy).

The terminology “Killing form” usually refers to a particular bilinear form on a Lie algebra

and its representations. Extension of this notion to the enveloping associative algebra is

usually not considered. In the present case, we are therefore using a slightly generalized ter-

minology (like in[29]). Notice thatin our examples the Hopf algeHrs finite dimensional,

so we can even discuss the structure of this Killing form in the regular representation.
Symmetry of the Killing formAs $2(X) = uXu™?, then

(X, S2(Y)), = (X, uYu b, = Truxuya ) = Tr(xuy) = Tr(uYX.
Therefore,
(Y. X)u = (X, S2(Y))u. (B.1)

This reduces to the usual symmetry wh#nis the identity, which is in particular the case
for a group.
Invariance of the Killing form under the adjoint actio®ne can show that

(adz, (X), adz, (Y))u = (X, Y)u €(2). (B.2)

In the classical case of a group or a Lie algebra, this reduces to the usual invariance of the
Killing form under the adjoint action.
To prove this property, one needs the following lemma:

Tr(wady (Y)) = Tr(uY) e(X).
Indeed,

Tr(uady (Y)) = Tr(uX YSX2)) = (X1, YSX2))u = (YSX2), S(X1)u
=Tr(uYSX2)S%(X1)) = Truy) e(X).

Therefore, the left-hand side of (B.2) reads

Tr(uady, (X) adz,(Y)) = Tr(uadz(XY)) = Tr(u XY) €(Z) = (X, Y), €(Z).

Appendix C. The “double” H of H

) We now takeg¥ = 1 (N odd), as before, but consider the finite dimensional quotient
H of the quantum algebré,, (sl(2, C)) by the Hopf ideal defined by = 0, K2V =1
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(rather thank ¥ = 1). Notice that this “double” has nothing to do with what is called the
“quantum double” of a Hopf algebra in the literature.

In order to make use of all the results concerrihgake X andK as the generators of
#, as before, and calf . andK the generators of.. Now set

K =03 ® K = Diag(K, —K), X, =1® X, = Diag(X,, X,),
X_=03® X_ =Diag(X_, —X_), (C.1)

whereo; are the Pauli matrices. This provides an explicit realizatiof{oh terms of .
One sees immediately that ditd) = 2dim(#) = 2N3 and obtains also foN = 3 an
explicit expression for the generators, in terms of Grassmann valugdlP2matrices, by
using the expressions &fL, K given in [22] or [13]. By construction, it is clear thaf is
aZ» quotient of/{ — notice that the group generated by power&ds no longerZs, like
before, buZz x Z, and thatk 3 is a non-trivial central element.

The representation theory of this algebra can then be obtained in a straightforward man-
ner: projective indecomposable representations are still given by the columns of the cor-
responding isomorphic Grassmann valued matrix algebra; the ones appearing in the upper
diagonal 6x 6 block of (C.1) are the same3 6o4q and Gye considered in Appendix A;
those appearing in the lower block will be denoted by, 8,4, and &, More generally
(for arbitrary N), we see that indecomposable representatiorig afe of two kinds: they
can be labeled by = 41, those for whicho = 1 arealsorepresentations ¥, whereas
those for whicho = —1 only appear as representationgbfThese two kinds of represen-
tations can therefore be distinguished by the eigenvalue of the non-trivial central element
K3. Remark that, whef{ is (faithfully) realized, as explained above, in terms 0fx122
matrices with Grassmann entries, the restrictigisandkX |, of K to the upper and lower
blocks are such tha |3 = 1343, andK |3 = —Tsxe.

Itmay be useful to recall that, whegns an odd {) root of unity, the center df/, (sl(2, C))
is generated by the Casingr, X andk*". Callc, x, y andz** the values of these central
elements in irreducible representations. There are irreducible representations “of classical
type” usually denoted by Spii, w), where; is a half-integer spin an@d = +1; in those
representations = y = 0 andz = o = +1. There are also irreducible representations
“of non-classical type” which can be “periodicky # 0) or semiperiodicXy = 0 but
eitherx # 0 ory # 0); such representations do not appear for finite dimensional Hopf
algebras quotients such &ssince bothe andy will then automatically vanish. Somehow,
consideringX instead of{ has the interest of allowing one to recover also the irreducible
representations di, (sl(2, C)) with = —1 as representations of a quasitriang(itaite
dimensional Hopf algebra.

A general discussion concerning Hopf stars, twisted or not, and scalar products can be
done here along the same general lines as before. In particular, notice that when we choose
one of the two possible twisted Hopf stacs’( = £X_, X* = £X,, K* = K1), the
invariant scalar products associated with the family of corresponding star representations
(w = +1) of H simultaneously exhibit features that in the casi efere obtained separately
for (twisted) stars of typ&U(2) or SU(1, 1). For example, we know (see Section 3.5.1)
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that the invariant scalar product op,3i.e., w = +1) associated with th8U(2) twisted

Hopf star is of signaturé+ + —), and that the signature {s- + +) for the twisted star

of type SU(1, 1). It happens that the conclusions are just to be reversed when we replace

3ir by 3,(w = —1). It may also be of interest to notice that invariant scalar products

corresponding to irreducible representatiofis@d 2. (for the twistedSU(2) case), or

3irr and Z,. (for the twistedSU(1, 1) case) of this doublg{ have a positive definite metric.
Regarding invariant scalar products on the left regular representatigr{as a module-

algebra), we have a freedom of 54 real parameters, for the same reasons as those given in

Section 3.4.3, but specific scalar products can be defined as in Section 4.

Remark (The simply connected form &f, (sl(2, C))). A standard construction atthe level

of the infinite dimensional universal quantum algefsae for examplf2,3]) U, (sl(2, C))
consists in introducing a square robtfor K, so thatk? = K; it is also useful to define
generatorsly for which the coproduct is symmetricale., AlL = 1. ® k14 k@ Iy

This infinite dimensional algebra generated{by. } is often called the “simply connected
form” of U, (sl(2, C)) and denoted}q (sl(2, C)). (In the literature this object is sometimes
calledjust SL(2)!) U, (sl(2, C)) is a Hopf subalgebra dﬁq (sl(2, C)); the explicitinclusion

of the former in the latter can be obtained by takikig= k%, X = I, kandX_ = k~17I_.
Sincek? is central one could then be tempted to build a finite dimensional Hopf quotient
of 0q (sl(2, C)) by factoring it by the ideal given b)ﬁ = 0andk® = 1. The point is that
one does not get anything essentially new by doing so: the obtained quotient is isomorphic
with  itself. Indeed, let us set =k? at the level of this quotient, theki® = k* = k and

K3 = k8 = 1. Hence the relation betwednand K can be invertedMoreover, one can
check explicitlfthanks to the previously given change of variables betweeand/..) that

all the algebra and coalgebra relations of this finite dimensional quotiem}qQSI(Z, C))
coincide exactly with those given f@f itself.
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