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1. Introduction

The purpose of the present paper is to study the concepts of Hopf star operations and
twisted Hopf star operations in the theory of quantum groups. This study is motivated by a
number of physical considerations that we shall discuss in this section.

First of all, one should remember that the notion of quantum group (Hopf algebra) does
not make use of a star operation — roughly speaking, the notion of complex conjugate
— choosing comes only at a later stage. Such an operation is an antimultiplicative and
antilinear involution which could be quite arbitrary when the (associative) algebra under
consideration is not a Hopf algebra.

However, the existence of a coproduct allows to distinguish two particular kinds of star
operations. The problem is to relate the star operations that one can define on the algebra
H and on its tensor squareH ⊗ H , since we have a very special embedding of the first
algebra into the latter one given by the coproduct. If1a = a1 ⊗ a2, it may be that the
chosen star such that1(a∗) = a∗

1 ⊗ a∗
2 (a Hopf star operation) but it also could happen that

1(a∗) = a∗
2 ⊗ a∗

1 (a twisted Hopf star operation).
Actually, one could define also “partially twisted stars”, which in a sense continuously

interpolates between a Hopf and a twisted star (see [1]), but these involve additional data,
an elementf ∈ H ⊗ H .

In the case of Lie groups or Lie algebras, star operations are used to define real forms.
However, for Hopf algebras the notion of “real form” is slightly more subtle (we shall say
more about it later), but it is a priori clear that the notions of complex conjugate and of star
representations should be discussed as soon as one wants to endow a representation space
with some sort of scalar product.

A general discussion of star versus twisted star operations seems to be lacking in the litera-
ture: mathematical books on quantum groups (for instance [2] or [3]) only discuss (genuine)
Hopf star operations, the same being true for all research papers studyingC∗-algebra as-
pects of “matrix quantum groups” (in the sense of Woronowicz [4]). In the physics literature,
most papers dealing with applications of quantum groups to integrable models, spin chains,
or conformal field theory, usually do not choose any particular star operation at all on the
quantum group of interest. But sometimes they do, and it turns out that the chosen star
is often a twisted star — although usually the authors do not acknowledge the fact that it
is so,2 and this state of affairs creates some confusion. Quantum groups have also been
discussed in relation with the possibility ofq-deforming the Lorenz group, and here again,
the two possibilities (twisted versus non-twisted) appear in the physical literature: from one
side we have the papers [7] or [8], whereas from the other we have the papers [9,10].

Another motivation for our work comes from the possibility, as advocated by Connes
[11], that reduced quantum groups likeUq(sl(2,C)) at a cubic root of unity could have some
essential role to play in the formulation of fundamental interactions (Standard Model). This
suggestion is based upon the following two observations: first of all, whenq is chosen
to be a cubic root of unity the algebra of “functions”Fun(SLq(2,C)) is a Hopf–Galois

2 With the notable exception of papers by Mack and Schomerus [5,6].
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extension ofFun(SL(2,C)) — the algebra of complex valued functions on the Lorenz
group — the fiber being a finite dimensional quantum groupF whose Hopf dual is a finite
dimensional Hopf algebra quotientU res

q (sl(2,C)) (that we shall callH) of the quantum
enveloping algebraUq(sl(2,C)). Next, for thisq the semisimple part ofH turns out to be
isomorphic with the algebraM(3,C)⊕M(2,C)⊕C. It is then tempting to use the tools of
non-commutative geometry to build a physical model that would recover the usual Standard
Model — may be a generalization of it — incorporating some action of an hitherto unnoticed
finite quantum group of symmetries. The existence of a non-trivial coproduct mixing the
different components ofH and the nature of the representations of this non-semisimple Hopf
algebra make it quite hard to recover the usual model of strong and electroweak interactions;
this has not been achieved yet. In any case, it is clearly of interest to analyze in detail the
structure of the representation theory of this Hopf algebra, and to pay particular attention to
the different kinds of “reality” structures that one can find for these representations. For these
reasons, and although we decided to write quite a general paper, most explicitly discussed
examples will involve the case of the finite dimensional algebraH = U res

q (sl(2,C)) at a
cubic root of unity.

Another motivation for studying the reality structures and the type of scalar products in
star representations of quantum groups comes from our previous work [12,13]. Here, a new
kind of gauge fields was obtained: starting from the observation that the reduced quantum
plane (identified with the algebra ofN × N complex matrices) is a module-algebra for the
finite dimensional quantum groupH, whenqN = 1, we build a differential algebra over it by
taking an appropriate quotient of the Wess–Zumino differential algebra over the — infinite
dimensional — quantum plane; generalized differential forms are then obtained by making
the tensor product of the De Rham complex of forms over an arbitrary space–time manifold
times the previous Wess–Zumino reduced differential complex; generalized gauge fields
(and curvatures, etc.) are finally constructed by standard non-commutative geometrical
techniques. Clearly, we wish to construct a Lagrangian model involving the representations
of a quantum group (that knows how to act on such generalized gauge fields), which requires
the study of star (or twisted star) operations on the corresponding modules.

Finally, the last motivation comes from spin chains, integrable models and conformal
theories. Theq-parameter appearing in many conformal field theory models and integrable
models is a primitive root of unity. Such values as a ruleexcludethe choice of a Hopf star
operation leading to a compact quantum group likeSUq(2), for instance. For this reason star
operations used in papers like [14] — where the role of quantum groups is discussed in the
context of spin chains, likeSUq(2) in theXXZmodel — are not true Hopf star operations;
we shall return to this discussion in Section 5.

The structure of our paper is the following.
In Section 2, we gather information on stars operations: Hopf and twisted Hopf stars,

compatible stars on modules and module-algebras, behavior under tensor product of
representations, etc.

In Section 3, we discuss scalar products in representation spaces, its quantum invariance
and associated star representations. As everywhere else in this paper, we first discuss all
the general notions and then exemplify by taking the finite dimensional quantum group
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H = U res
q (sl(2,C)) for q a primitive odd root of unity (most of the time we takeN = 3).

The characteristics of the invariant scalar products on the irreducible and the projective
indecomposable representations ofH are studied in detail, both in the case where a genuine
or a twisted Hopf star is chosen onH. The same analysis is carried out for the module-algebra
M(N,C).

In Section 4, we examine more particularly the (left) regular representation of a Hopf
algebraH and exhibit two distinguished invariant scalar products. The first one is defined
in terms of the Killing form. The other is built using the left (or right) invariant integral on
the algebraH . We then analyze in detail these scalar products for the case ofH. As we
shall see, it happens that for many properties Hopf stars behave usually much better than
twisted Hopf stars.

Appendix A summarizes what is needed for this paper from the structure and represen-
tation theory of the finite dimensional Hopf algebrasH = U res

q (sl(2,C)) whenq is an odd
primitive root of unity, in particular the structure of the projective indecomposable modules
(PIMs) and of the corresponding irreducibles.

Appendix B recalls a few properties concerning the adjoint representation of quantum
groups, together with the notions of quantum trace and quantum Killing form.

Appendix C gives a few explicit results concerning a “double cover” of the finite dimen-
sional Hopf algebraH.

1.1. About notations

F will generically denote a complex Hopf algebra, for example, the algebra of “functions”
on a quantum group.H will be its dual (also a Hopf algebra), so that it can be thought
of as a non-commutative generalization of the group-algebra of a finite group or as the
non-commutative analog of the enveloping algebra of a Lie algebra. As already mentioned,
the particular examples whereH is chosen to be one of the finite dimensional quotients of
Uq(sl(2,C)) will be calledH. V will denote a representation space forH (and we shall
have to specify if it is a left or a right module), and will therefore also be a (left or right)
corepresentation space of the Hopf algebraF . Finally,M will denote a module-algebra for
H (i.e., a comodule-algebra forF ).

2. Stars

2.1. Hopf stars

Remember that a star on an algebra is an involutive antilinear antiautomorphism, i.e.,

(x∗)∗ = x, (λx)∗ = λ̄x∗, (xy)∗ = y∗x∗, λ ∈ C.

Now, let the algebra on which∗ acts be a complex Hopf algebraH(m, 1, η, ε, S). In this
case one requires the star to satisfy two extra compatibility conditions [2] with the Hopf
operations:

1∗ = ∗⊗1, ε∗ = ∗Cε. (1)
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However, the∗’s on the right-hand side are operators on different spaces and are yet to be
defined.∗C should be a star onC, and therefore is just complex conjugation. The operation
∗⊗ should be an involution onH ⊗ H , the standard choice is

∗⊗ = ∗ ⊗ ∗.

A star satisfying (1) with the standard choice of∗⊗ is called a Hopf star, and in such a case
H is called a Hopf star algebra.

Actually one could also make the choice∗⊗ = τ(∗ ⊗ ∗), whereτ is the tensorial flip
(twisting); however, making such a choice and imposing (1) amounts to make the standard
choice for∗⊗ and rewrite (1) as

1∗ = ∗⊗1op,

where1op .=τ ◦ 1 is the opposite coproduct. We will call this second type of operation a
twistedHopf star, or even a twisted star. In this paper, therefore, we shall always make the
standard choice for∗⊗. In this section, we will analyze Hopf star algebras, leaving the study
of the twisted case to Section 2.2.

Remark that there is no need to impose a relation between the star and the antipode (which
is alinear antiautomorphism) because this one arises automatically. In fact, it is easy to see
that

S ∗ S∗ = id. (2)

This is so because∗ S−1 ∗ = (∗ S ∗)−1 satisfies all the conditions for the antipode, which
is unique. We should therefore remember that for Hopf star algebras

S ∗ = ∗ S−1.

Notice that in generalS has no reason to be equal toS−1 (imposing such a property would
exclude all the Drinfeld–Jimbo deformations!).

Given a Hopf algebraH , one can consider its dual3 Hopf algebraF = H? with operations
such that

〈1f, h ⊗ h′〉 = 〈f, hh′〉, ∀h, h′ ∈ H, 〈ff ′, h〉 = 〈f ⊗ f, 1h〉,
〈Sf, h〉 = 〈f, Sh〉, ε(f ) = 〈f, 1H 〉, 〈1F , h〉 = ε(h), (3)

where〈, 〉 : F ⊗ H → C is the bilinear evaluation pairing. WhenH is a Hopf star algebra,
one may also define a dual star onF . By dual star we mean a star onF which is also a Hopf
star. It is easy to verify that the following formula defines such an operation:

〈f ∗, h〉 = 〈f, (Sh)∗〉 ∀h ∈ H. (4)

In what followsF will be thought of as the space of functions on a quantum group, and its
dualH as the quantum group analog of the corresponding group algebra (or the enveloping
algebra).

3 The examples that we shall consider in this paper are finite dimensional (and non-semisimple) Hopf algebras,
therefore it will be possible to identify canonically a given Hopf algebra with its bidual.
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Remark that another standard accepted terminology for denoting the star structure of a
(untwisted) Hopf star algebra is “real form on a Hopf algebra”. This name does not imply,
and we do not construct here, anyreal Hopf subalgebra ofH , in the sense of being an
algebra over the fieldR of real numbers (see [1] for a discussion of this point). LetT be a
linear involutive Hopf algebra antiautomorphism (we call itT for transposition like in [15])
of a complex Hopf star algebraH , and consider the subspaceHR

.={h ∈ H/h∗ = T (h)}.
Suppose moreover thatH = HR ⊕ iHR, T ∗ = ∗T andHR is invariant by the coproduct
1 (i.e., 1HR ⊂ HR ⊗ HR), thenHR is a real Hopf algebra associated with the star∗
and the involutionT . Notice thatc

.=T ∗ is an antilinear involutive automorphism4 and that
HR is the set of elements ofH that are invariant under the conjugationc. Notice also that
if h ∈ HR, then ih, as defined inH , cannot belong toHR since(ih)∗ = −T (ih). When
H is “classical” (the enveloping algebra of some complex Lie algebra), such aHR is the
enveloping algebra of a real Lie algebra. Moreover, in this case one takesT = S (since
S2 = id), so in HR we havex∗ = T (x) = S(x) = x−1 for group-like elements and
x∗ = T (x) = S(x) = −x for primitive elements.

2.1.1. Self-conjugate representations and compatible stars on modules
Suppose now that we are given a star∗H on the Hopf algebraH , and a representation on

a vector spaceV . We may have to face possible situations.
The first possibility is that we may want to define a star∗V onV and decide to constrain it

by imposing some sort of compatibility with the star∗H on the quantum group. The second
possibility is to suppose that we already start with a star∗V on V (a priori given); in such
a case5 one can define on the same vector space a new representation called the conjugate
representation. It may happen that both actions — the original one and its conjugate — are
equivalent. In this last case the representation is therefore calledself-conjugated.

Actually, the compatibility condition (see below) between the stars in the first scenario is
just a particular case of the second option, as we define∗V to be such that the representation
precisely coincides with its conjugate.

Going back to our first problem, suppose now that we want to define a star∗V on V ,
which is a representation space for the quantum groupH and a corepresentation space for
its dualF (i.e.,V is a rightF -comodule). Call the coactionδR : V 7→ V ⊗ F .

For a Hopf star∗F onF it can be checked that the operationδ′ .=(∗⊗∗)δR ∗ : V → V ⊗F

is again a right coaction onV . Therefore, it is natural to imposeδ′ = δR as the compatibility
condition between the stars∗F and∗V . With a slight abuse of notation we can even write

δR(z∗) = (δRz)∗, z ∈ V, (5)

where the conjugation on the right-hand side is the natural star structure onV ⊗ F . In this
case we may say that the star is covariant.

4 In the case of our favorite exampleH, such an operatorc can be defined [16], on the generators, by setting
c(X+) = −qKX−, c(X−) = −qK−1X+, c(K) = K.

5 Thinking now only in the Hopf star case, as it is the only one where this notion makes sense.
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V being a (right)F -comodule, it is also a (left)H -module. We have indeed an action
F : H ⊗ V 7→ V given by

h F z = (id ⊗ 〈h, ·〉)δR(z).

Pairing Eq. (5) with an elementh ∈ H , and using the duality of real structures we get the
equation

h F z∗ = [(Sh)∗ F z]∗, z ∈ V. (6)

Assuming non-degeneracy of the duality pairing both expressions are completely equivalent,
and imply some restrictions on∗V given∗F or ∗H .

The actionhF of h on V is implemented due to an endomorphismρ[h] of this vector
space, so one may also writeh F .=ρ[h]. Using this notation, Eq. (6) can also be written as

ρ[h](z) = ρ̄[h](z),

whereρ̄ denotes the conjugate representation

ρ̄[h](z) = [ρ[(Sh)∗](z∗)]∗

dual to the aboveδ′ right coaction.6 Therefore, the compatibility relation (6) between
the stars onH and V can also be viewed as a very particular case of equivalency of
representations:ρ andρ̄ should just coincide. Given the star operations, a representationρ

is calledself-conjugateif there exists an invertible operatorU : V 7→ V such that

U−1ρ[h]U = ρ̄[h].

Up to now we did not assume that the representation spaceV was endowed with a scalar
product(·, ·). Therefore, we cannot impose, at this point, thatU should be unitary. We cannot
assume either that the star operation onV is an antiunitary operator,(v∗, w∗) = (w, v). For
the same reason too, the notation † (adjoint) was avoided. In any case, a Hopf algebra is, in
particular, an associative algebra, and if it so happens that areal Hopf algebraHR can be
defined the usual classification for representations of real associative algebras on complex
Hilbert spaces will, of course, also hold. We could have three types of representations,
complex, real, and quaternionic; we refer the reader to standard textbooks (see for instance
[17,18]).

2.1.2. Compatible stars on module-algebras
Instead of a comoduleV , we now take a rightF -comodule-algebraM, i.e., we assume

that the right coactionδR is an algebra homomorphism fromM to M ⊗ F ,

δR(zw) = δRzδRw.

The mapδ′ : M → M ⊗ F defined as above will again be an algebra homomorphism,
i.e.,δ′(zw) = δ′z δ′w. Thus Eq. (5) is still a good requirement when the comoduleM is an

6 Remember that in the “classical” case (i.e., real forms of Lie algebras and their enveloping algebras),(Sh)∗ = h

for the Lie algebra generators, and we recognize the usual equationρ̄ = ∗ρ∗ defining the conjugate representation.
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algebra and shows that compatibility of the coaction with a given Hopf star operation needs
only to be verified on the (algebra) generators.7

Obviously the dual equation (6) defining compatibility of Hopf stars on left modules
will also have the same properties. Remember that, being a rightF -comodule-algebra,M
supports a left action of the dualH of F and indeed this action is compatible with the
product inM (call 1h = h1 ⊗ h2):

h F (zw) = (h1 F z)(h2 F w).

2.1.3. Example of the reduced SLq(2,C) at qN = 1
Hopf stars onF andH
First of all, remember that in the quantum case one has three possibilities for the star

operations onFun(SLq(2,C)) (up to star-Hopf homomorphisms). Given the conventions
chosen in [13], they are given on generators by the following.
• The real formFun(SUq(2)): a∗ = d, b∗ = −qc, c∗ = −q−1b andd∗ = a. Moreover,q

should be real.
• The real formFun(SUq(1, 1)): a∗ = d, b∗ = qc, c∗ = q−1b andd∗ = a. Moreover,q

should be real.
• The real formFun(SLq(2,R)): the conjugation is given by

a∗ = a, b∗ = b, c∗ = c, d∗ = d. (7)

Here,q can be complex but it should be a phase.
Whenq = ±i — henceq4 = 1 — there are still two other Hopf star structures that have
no classical limit (see [2] and references therein). A systematic analysis of real forms for
special linear quantum groupsSLq(n) was made by Jain and Ogievetsky [19], and in the
case ofGLp,q(2) or GLJ

α(2) by Ewen et al. [20].
It is already clear from these results that takingq a root of unity is incompatible with the

SUq andSUq(1, 1) real forms. The only possibility if we assumeqN = 1 is to choose the
Hopf star corresponding toFun(SLq(2,R)). Moreover, in such a case the star is compatible
with the finite dimensional Hopf algebra quotientF obtained by factoring this quantum
group by the Hopf ideal defined by [13]:aN = dN = 1, bN = cN = 0 (takeN odd here,
andq a primitiveN th root of unity).

The corresponding dual star on the dual Hopf algebraUq(sl(2,C)) (see [13] or Appendix
A for its structure) is

X∗
+ = −q−1 X+, X∗

− = −q X−, K∗ = K. (8)

Here, one can also factor the quantum enveloping algebra by the Hopf ideal defined by
KN = 1, XN+ = 0, XN− = 0 and the same remarks concerning the fact that the stars passes
to the quotientH apply [13].

Compatible star on the quantum planeM
The quantum groupFun(SLq(2,C)) coacts on the quantum plane algebra generated

by x, y such thatxy = qyx. For a root of unity this algebra can be quotiented by the

7 In the case of a module-algebra, the star operation is of course assumed to be antimultiplicative ((xy)∗ = y∗x∗).
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ideal defined byxN = yN = 1 to obtain a finite dimensional algebra that we callM.
M is a right comodule-algebra forF and the right coaction is given byδR( x y ) =
( x y )⊗̇

(
a b

c d

)
. The reduced quantized universal enveloping algebraH acts on this

quantum plane (for compatible formulae for actions and coactions, see for instance [13]).
Up to equivalences (now∗-homomorphisms) there is only one conjugation on this quantum
plane compatible with the requirements (5) or (6). It works for both the infinite dimensional
algebra or its reduced (finite) quotients whenqN = 1. It is

x∗ = x, y∗ = y.

Notice that although the star is the identity on the generators, it is non-trivial onM since
it is an antimultiplicative operation and, for instance,(xy)∗ = q−1xy.

2.2. Twisted Hopf stars

As we mentioned before there is an alternative way of relating the Hopf and star structures
on a Hopf algebra. It reduces to replacing in (1) the equation for the coproduct by8

1∗ = (∗ ⊗ ∗)1op.

Given such a twisted star on a Hopf algebraH , the dual Hopf algebraF = H? can be also
endowed with a dual twisted Hopf star. One just has to define it by

〈f ∗, h〉 = 〈f, h∗〉. (9)

It can be readily verified that this operation is a twisted Hopf star onF . As in the untwisted
case, a relation involving the antipode is automatically fulfilled. Now the antipode and the
star commute,

S ∗ = ∗ S. (10)

This is so because∗S∗ is again an antipode, which is unique.

2.2.1. Compatible twisted stars on modules
Let V be again a rightF -comodule. Given∗F a twisted Hopf star onF we would now

like to use it to restrict the possible choices for a star∗V onV , as it was done with Eq. (5)
in the pure Hopf case.

∗F being twisted,(∗ ⊗ ∗) δR ∗ : V 7→ V ⊗ F is no longer a right coaction, however,
τ(∗⊗∗) δR ∗ : V 7→ F⊗V is a left one. Moreover,(id⊗S)(∗⊗∗) δR ∗ = (∗⊗∗)(id⊗S) δR ∗
is again a right coaction. Consequently, we may require

(id ⊗ S)δR(z∗) = (δRz)∗, z ∈ V, (11)

8 It could even be written as1∗ = ∗op1 at the expense of using a flipped definition of the star on the tensor
product:∗op(f ⊗ g) = g∗ ⊗ f ∗.
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or the following dual expression for the corresponding action ofH on the moduleV :

h F z∗ = [(Sh)∗ F z]∗, z ∈ V. (12)

Notice that this condition looks formally like (6).

2.2.2. Compatible twisted stars on module-algebras
If we now letV to be anF -comodule-algebra (we then call itM rather thanV ), it happens

that (11) is not a reasonable condition anymore, because(id⊗S)δR∗ and∗δR have different
homomorphism behavior. It may also be said that(id ⊗ S)(∗ ⊗ ∗)δR∗ is not an R-coaction
on an algebrabut only a coaction; it does not preserve the product onM.

As τ(∗ ⊗ ∗) δR ∗ is a good homomorphism, the way out to constrain∗M is to choose
someother left algebra-coactionδL onM and impose

δR(z∗) = (δLz)∗op, z ∈ M, (13)

where now the star∗op on the right-hand side includes the tensorial flip (onF ⊗ M it is
given by∗op(f ⊗z) = z∗ ⊗f ∗, z ∈ M, f ∈ F ). Remark that for many interesting cases we
have both natural left and right coactions; this is for instance the case for quantum planes.

The dual condition involves the left and right actions ofH on M which are dual toδR

andδL, they are, respectively, denoted byF andG. It reads

z∗ G h = [h∗ F z]∗, h ∈ H, z ∈ M. (14)

2.2.3. Example of the reduced SLq(2,C) at qN = 1
Twisted Hopf stars onF andH
On both the reduced and unreducedSLq(2,C), the twisted stars are essentially the fol-

lowing9 (i.e., up to automorphisms):

a∗ = a, b∗ = ±c, c∗ = ±b, d∗ = d. (15)

So we have two of them, and the corresponding dual twisted stars are given by

X∗
+ = ±X−, X∗

− = ±X+, K∗ = K−1. (16)

Thus we see that, whenq is a root of unity, these twisted stars allow one to recover theSU(2)

(+ sign) andSU(1, 1) (− sign) real forms, something that would be otherwise forbidden
with a trueHopf star operation.

Compatible star on the quantum planeM
On the quantum plane there is, again up to equivalence, only one star structure compatible

in the sense (13) or (14) with each of the twisted stars (15) or (16). These twisted stars are,
respectively, given by

x∗ = x, y∗ = ±y. (17)

9 The operation defined on generators bya∗ = d, d∗ = a, b∗ = ±b andc∗ = ±c “almost works”, in the sense
that it defines a twisted star inGLq (2,C) but it is incompatible with the determinant condition definingSLq (2,C).
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2.3. Stars and tensor products

2.3.1. Tensor product of matrices
If

m =
(

a b

c d

)
and M =

(
A B

C D

)

are two matrices withnon-commutativeentries belonging to a ringB, then it is standard to
define their tensor product as

m ⊗ M
.=




aA aB bA bB
aC aD bC bD
cA cB dA dB
cC cD dC dD


 .

We now define a different tensor product,⊗op, by

M ⊗op m =




Aa Ba Ab Bb
Ca Da Cb Db
Ac Bc Ad Bd
Cc Dc Cd Dd


 ,

the difference being that now the matrix which determines the coarse structure of the
tensor product is the second one. It is clear and well known thatm ⊗ M 6= M ⊗ m,
independent of whetherB is commutative or not. However, we see that whenB is abelian,
m⊗M = M⊗opm. The previous calculation tells us how to modify this result whenB is not
commutative: callingBop the same ring withoppositemultiplication (so thatA.opa = a.A,
for example), we obtain

m(B) ⊗ M(B) = M(Bop) ⊗op m(Bop),

where the notationM(Bop)⊗opm(Bop) means that we first take the opposite tensor product
of the two matrices and subsequently we multiply the matrix elements in the opposite order.

Suppose in addition that the ringB is endowed with a star operation∗, and call † the
conjugation of matrices withB-entries. In the case of 2× 2 matrices, this reads

(
a b

c d

)†
.=

(
a∗ c∗

b∗ d∗

)
.

So defined † is antimultiplicative. Moreover, direct calculation shows that

(m ⊗ M)† = M† ⊗op m†.

WhenB is commutative, the previous right-hand side can be written simply asm† ⊗ M†.
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2.3.2. Tensor product of representations
Now letA be an algebra. Takeρ1 andρ2 to be two representations ofA in vector spaces

V1 andV2. Then, once bases are chosen,ρ1(a) andρ2(a), with a ∈ A, are two matrices
with commutative entries.

It is clear thatρ1⊗ρ2 is a representation of the algebraA⊗A, indeed, witha⊗b ∈ A⊗A,
we have

[ρ1 ⊗ ρ2](a ⊗ b) = ρ1(a) ⊗ ρ2(b).

However, this is not a representation ofA, unless we have a coproduct (algebra homomor-
phism) fromA toA⊗A: using

a ∈ A→ 1a
.=a1 ⊗ a2 ∈ A⊗A,

one definesρ1 ⊗ ρ2 as a representation ofA by setting

[ρ1 ⊗ ρ2][a]
.=[ρ1 ⊗ ρ2](1a).

If A is a Hopf algebra, we are in such a situation. This is what we assume from now on.
Now, suppose thatA has a star operation, and that(ρ1, †), (ρ2, †) are star representations

of this Hopf algebra on modulesV1, V2 (each one endowed with a scalar product for which
the adjoint is denoted by †). So, we have

ρ1(u
∗) = (ρ1(u))† and ρ2(u

∗) = (ρ2(u))†.

We shall now suppose that the star is, somehow, compatible with the Hopf structure. We
shall discuss the Hopf star and twisted Hopf star cases.

We first suppose that∗ is a Hopf star. It then commutes with1, and

[ρ1 ⊗ ρ2][a∗] = [ρ1 ⊗ ρ2](1a∗) = [ρ1 ⊗ ρ2](∗1a) = [ρ1 ⊗ ρ2](a∗
1 ⊗ a∗

2)

= ρ1(a
∗
1) ⊗ ρ2(a

∗
2) = (ρ1(a1))

† ⊗ (ρ2(a2))
† = (ρ1(a1) ⊗ ρ2(a2))

†

= ([ρ1 ⊗ ρ2](a1 ⊗ a2))
† = ([ρ1 ⊗ ρ2](1a))† = ([ρ1 ⊗ ρ2][a])†.

Therefore,ρ1 ⊗ ρ2 is also a∗-representation.
We now suppose that∗ is a twisted Hopf star. It no longer commutes with1but intertwines

it with the opposite coproduct1op. In this case,

[ρ1 ⊗ ρ2][a∗] = [ρ1 ⊗ ρ2](1a∗) = [ρ1 ⊗ ρ2](∗1opa) = [ρ1 ⊗ ρ2](a∗
2 ⊗ a∗

1)

= ρ1(a
∗
2) ⊗ ρ2(a

∗
1) = (ρ1(a2))

† ⊗ (ρ2(a1))
† = (ρ1(a2) ⊗ ρ2(a1))

†

= ([ρ1 ⊗ ρ2](a2 ⊗ a1))
† = ([ρ1 ⊗ ρ2](1opa))† 6= ([ρ1 ⊗ ρ2][a])†.

Therefore,ρ1⊗ρ2 is not a∗-representation for a twisted∗. However, we have the possibility
of defining “another” tensor product of representations,10 called⊗op, as follows:

[ρ1 ⊗op ρ2][a]
.=[ρ1 ⊗ ρ2](1opa).

10 WhenA is quasitriangular, we recall that the two coproducts are related by anR-matrix as follows:1op(a) =
R1(a)R−1.
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With this notation at hand, we can write

[ρ1 ⊗ ρ2][a∗] = ([ρ1 ⊗op ρ2][a])†.

For this reason, “true” Hopf stars are usually preferred in mathematics, as the category of
∗-representations is closed under tensor product. Another possibility, the one employed in
CFTs, is to truncate tensor products (see Section 5). Star representations are closed under
this truncated tensor product for both types of stars.

2.3.3. Hopf action on vectors with non-commutative elements
We now suppose thatρ1 andρ2 are no longer complex matrices but matrices with elements

taken in a star algebraB. We still assume that we have a left action, in the senseρi(ab) =
ρi(a)ρi(b), but this is not a representation in the usual sense. As before we assume that
A is endowed with a star operation and that(ρi, †) are star representations, in the sense
ρ(a∗) = (ρ(a))†, where † transposes the matrixρ(a) and takes the conjugate (inB) of
each element.

If we suppose that∗A is a Hopf star, then a direct calculation shows that

[ρ1 ⊗ ρ2][a∗] = ([ρop
1 ⊗ ρ

op
2 ][a])†.

Usually, forB = C, we haveρop = ρ, but this is not so in general; the upper index “op”
in ρop(a) reminds us that we should use the opposite multiplication ofB when making
product of matrices such asρop(a).

If we take instead a twisted Hopf star, the conclusion is now

[ρ1 ⊗ ρ2][a∗] = ([ρop
1 ⊗op ρ

op
2 ][a])†.

3. Invariant scalar products

3.1. Compatibility with Hopf stars

Defining the notion of an invariant scalar product(·, ·) on a representation spaceV of
a quantum groupH is not as straightforward as in the classical case. We want the scalar
product to commute with the action of the Hopf algebra in the appropriate sense. However,
in order to get a relation which needs to be checked only on the quantum group generators,
we want this condition to be a (linear) homomorphism in theH variable. Given that the
scalar product is antilinear in one of its variables, there are two ways of achieving this,11

ε(h)(z, w) = ((∗ S h1) F z, h2 F w) (18)

or

ε(h)(z, w) = ((S ∗ h1) F z, h2 F w). (19)

We refer the reader to [12] for more detailed discussion.

11 In the “classical case” (real form of some Lie algebra), both formulae read(z, h F w) + (h F z, w) = 0.
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As the Hopf star does not commute with the antipode, sinceS ∗ = ∗ S−1, (18) and (19)
are, in general, two different conditions.

For the scalar product to be invariant in the sense of Eq. (18), one only needs the quantum
group action to be given by a∗-representation: 12

(h F z, w) = (z, h∗ F w). (20)

Notice that (20) implies (18) but not conversely. In the same way the alternative requirement
(h F z, w) = (z, S2(h∗) F w) implies that condition (19) is satisfied. However, in our
examples, we will choose to work with∗-representations, and therefore, with invariant
scalar products in the sense (18).

Assuming a non-degenerate pairing betweenH and its dualF , and extending the notation
(·, ·) to the followingF -valued sesquilinear map onV ⊗ F :

(v ⊗ f, w ⊗ g)
.=(v, w)f ∗g, v, w ∈ V, f, g ∈ F,

we may write the previous equations in the dual picture in a very simple way. The first
invariance condition reads

(δR v, δR w) = (v, w)1F ,

whereas the∗-representation requirement (20) reads

(v, δRw) = ((id ⊗ S)δRv, w).

Again, this latter requirement implies the former.
Now, let{vi} be a basis of the vector spaceV , and callGij = (vi, vj ) the corresponding

metric. Moreover, define the matrix ofh ∈ H in such a basis byh F vi
.=‖h‖jivj . From

Eq. (20) it is now trivial to get the matrix identities

‖h‖†G = G‖h∗‖, (21)

where † denotes the transposed conjugate matrix. In particular, for an orthonormal basis
this reduces to‖h‖† = ‖h∗‖.

3.2. Compatibility with twisted Hopf stars

The previous discussion (Section 3.1) does not use the fact that the chosen star should be
a “true” Hopf star operation; therefore, the same invariance conditions (18) and (19) still
apply in the twisted case. However, nowS∗ = ∗S, so that both conditions coincide.

The invariance requirement is still automatically satisfied if the representation ofH under
study is a∗-representation (formula (20)). However, now the dual formulas are slightly
different due to the absence of the antipode in the duality (9). The scalar product will be
called invariant if

((id ⊗ S)δR v, δR w) = (v, w)1F ,

12 If the action ofh is implemented by a linear operatorρ[h] on V , this condition simply readsρ[h∗] = (ρ[h])†,
where † is the usual adjoint operator.
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and the (co)representation will be a∗-(co)representation if

(v, δRw) = (δRv, w).

Selecting a basis ofV we can write, exactly as in the untwisted case,‖h‖†G = G‖h∗‖ for
anyh ∈ H .

3.3. Quantum metric and quantum symplectic form onM(2,F)

Untwisted case
The q-deformed symplectic form in two dimensions (one may call it theq-deformed

epsilon tensor) is given by the matrix

6
.=

(
0 q−1/2

−q1/2 0

)
.

In fact the∗-representation condition implies for the true Hopf star case the equation

T † 6 T = 6.

Here,

T
.=

(
a b

c d

)

is the multiplicative matrix of generators of the quantum function groupSLq(2,C), and the
† operation corresponds to applying∗ to the elements and transposing the matrix:

T † .=
(

a∗ c∗

b∗ d∗

)
.

Notice that the above equation is different from (21) as there is a duality involved, there
h ∈ H , ‖h‖ij ∈ C, whereas hereTij ∈ F . Using the star (7) corresponding toSLq(2,R) and
fixing a global factor by requiring hermiticity of6, we finally obtain the “invariant metric”
given above.

Twisted case
Now, as the duality between the star on a Hopf algebra and its dual differs from the one

in the untwisted case, the∗-representation condition implies the relation

(ST)† 6 T = 6,

whereS is the antipode. Taking the twisted conjugacya∗ = a, b∗ = ±c, c∗ = ±b and
d∗ = d, we get the metric

6±
.=

(
1 0
0 ±1

)
,

as we would expect in a (twisted)SU(2) andSU(1, 1) case, respectively.



R. Coquereaux et al. / Journal of Geometry and Physics 36 (2000) 22–59 37

3.4. Invariant scalar products forH endowed with a Hopf star

3.4.1. Invariant scalar products on the indecomposable representations ofH
This was worked out in Appendix E of [13]. Here, we repeat the expressions for the

matrices of scalar productsG just for completeness and to ease the comparison with the
twisted case. Technically this is done by solving the set of linear equations (21) for the
coefficientsGij takingh = X± andK, and imposing hermiticity ofG. Each entry in the list
below corresponds to an indecomposable representation, remember that 3irr is projective
and irreducible, whereas 6odd and 6eve are projective indecomposable (with corresponding
irreducible representations of dimensions 1 and 2, respectively). We only single out the
following salient features (notice thatG is always given up to an overall normalization
factor):
• 3irr : we get

G =

 0 0 −q2

0 1 0
−q 0 0


 and σ = (+ + −).

The index ofG (maximal dimension of each of the two maximally isotropic subspaces)
is therefore 1, and the Witt decomposition reads 3= 1 + 1 + 1.

• 6odd: with β ∈ R we have here

G =




0 0 0 q 0 0
0 0 −q 0 0 0
0 −q2 0 0 0 0
q2 0 0 0 0 0
0 0 0 0 β 1
0 0 0 0 1 0




∼ Diag(1, 1, −1, −1, λ+, λ−),

with λ+ > 0, λ− < 0. G is neutral, as its signature isσ = (+ + + − − −). The index
of G is 3 and the Witt decomposition reads 6= 3 + 3.

• 5odd: takingβ, γ ∈ R, g ∈ C,

G =




0 0 iqγ g 0
0 0 −q2ḡ iqβ 0

−iq2γ −qg 0 0 0
ḡ −iq2β 0 0 0
0 0 0 0 0


 ∼ Diag(λ+, −λ+, λ−, −λ−, 0),

andσ = (+ + − − 0).
• 3odd: now,

G =

 0 iq 0

−iq2 0 0
0 0 0


 and σ = (+ − 0).
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• 6eve: the metric should be (β ∈ R)

G =




0 0 iqβ −iq 0 0
0 0 −iq 0 0 0

−iq2β iq2 0 0 0 0
iq2 0 0 0 0 0
0 0 0 0 0 i
0 0 0 0 −i 0




,

with a signatureσ = (+ + + − − −) for anyβ. As in the 6odd case,G is neutral with
an index of 3, and the Witt decomposition reads 6= 3 + 3.

• 4eve: havingα, β ∈ R, andg ∈ C, we may write

G =




0 0 0 0
0 0 0 0
0 0 α g

0 0 ḡ β


 .

Now, its signature obviously depends on the parameters.
• 3eve: here we have simplyG = Diag(0, 0, 1), andσ = (+00).
• 2eve: in this case,

G =
(

0 iq
−iq2 0

)
∼ Diag(1, −1).

3.4.2. Invariant scalar products onM
It can be seen that forN = 3, q3 = 1, the reduced quantum planeM, a module-algebra

for H, is isomorphic as an algebra to the matrix algebraM(3,C), whereas as a vector
space splits into the sum of threeunequivalentindecomposable representations, namely
M ∼ 3irr ⊕ 3eve⊕ 3odd.

Actually, this feature can be generalized for allN odd,qN = 1. The corresponding quan-
tum plane (which is now isomorphic withM(N,C)) splits into the sum ofN unequivalent
indecomposable representations ofH. One of them is the irreducibleNirr , and the others
are analogous to the “intermediate modules” that appear within each lattice of submodules
associated to the otherN − 1 PIMs ofH. This property was proven in [21].

A word of warning seems to be necessary here: the algebraM(N,C) plays an ubiquitous
role here. Indeed, on one hand it is isomorphic with a simple subalgebra ofH (see the
structure of the regular representation given in Appendix A). As such, its underlying vector
space splits into a sum ofN subspaces carrying equivalent representations (all equivalent to
theNirr ), appearing in the decomposition of the regular representation in PIMs. In this way
M(N,C) appears as an algebra and as a module, but not as a module-algebra (considering
Z, W ∈ M(N,C) ⊂ H andX ∈ H, in generalX(ZW) 6= (X1Z)(X2W)). On the other
hand,M(N,C) is also isomorphic with the reduced quantum plane, and as such it is a
module-algebra, but not a subalgebra ofH anymore. Its decomposition under the action of
H is now more subtle, since it readsM(N,C) ∼ Nirr ⊕ N1 ⊕ N2 ⊕ · · · ⊕ NN−1.
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Because of this last result, one could be tempted to think that the most general scalar
product on the reduced quantum planeM is simply given by the direct sum of its restric-
tions to the modules 3irr , 3eve and 3odd that are already known, but it is not so. Indeed,
non-diagonal blocks may appear as we can have non-zero projections amongst vectors of
different indecomposable representations.
M being not only a module but also a module algebra, we impose condition (20) for the

left action ofM on itself given by multiplication as well. This singles out a unique invariant
Hermitian form( , ) up to an overall scaling factor. Its structure was studied in Section 5.5 of
[13] and goes as follows: the only non-zero scalar products are those of the type(xrys, xpyt )

with r + p = s + t = 2, and they are all determined by setting(xy, xy) = 1. The signature
of this metric is(5+, 4−), so its index is 4 and the Witt decomposition reads 9= 4+4+1.
In the basis{{x2, xy, y2}, {x, y, x2y2}, {1, x2y, xy2}}, the scalar product can be written as

G =

 B 0 0

0 0 B

0 B 0


 ,

whereB is the 3× 3 block:

B =

 0 0 q2

0 1 0
q 0 0


 .

The restriction of this scalar product to the subspace 3irr coincides with what was already
obtained before, a form of signature(2+, 1−). The restriction to the subspaces 3eve and
3odd is actually totally degenerate, so the conclusion we find forM does not contradict
what was already obtained for 3eve and 3odd (just choose an overall scaling factor equal to
0 in the latter cases).

3.4.3. Invariant scalar products on the regular representation ofH
One should not be tempted to think that the most general Hermitian scalar product on
H(N = 3) itself is simply given by its restrictions to the direct sum 3[3irr ]⊕2[6eve]⊕1[6odd]
since we may very well accept “off-block” components. As a matter of fact, the constraints
in this case are rather weak: for any given star, any Hermitian form such that(X∗Y, Z) =
(Y, XZ) will work, but such a form is totally determined by the values of(1, Xa+Xb−Kc).
Since we haveN3 terms, we see at once that the most general invariant scalar product onH
will depend onN3 parameters (real ones, due to the hermiticity of the scalar product). If one
really wants to obtain an explicit expression for the possible metricsG’s, in the caseN = 3,
the thing to do is to write explicitlyX± andK as 27×27 matrices (this is numerically easy,
once we know how to write these generators inM(3,C) ⊕ (M2|1(32))0; this was done in

[22] and recalled in [13]) and solve the Eqs. (21),‖h‖†G = G‖h∗‖, for the coefficients
Gij , whereh = X± andK. One can then check that this set of equations indeed lead to a
solution depending on 27 parameters.

Because of this pretty big number of free parameters, the signature can be rather arbitrary.
This is a slightly disappointing result since we are looking for some kind of constraint(s)
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that more or less fix the Hermitian form. It would also be nice if the structure of this scalar
product could somehow reflect the algebraic structure ofH itself. As we shall see later, this
goal will be achieved by the choice of a particular scalar product that we call the “Hermitian
Killing form”. Yet another interesting scalar product on the regular representation can be
defined by using the existence of left (or right) invariant integrals (see Section 4.2).

3.5. Invariant scalar products forH with a twisted star

3.5.1. Invariant scalar products on the indecomposable representations ofH
As it was done for the true Hopf star in Appendix E of [13], we here show the most general

metric on the vector space of each of the indecomposable representations ofH using the
twisted stars (16). Since we have two possible choices, the± signs below correspond,
respectively, to the± possibilities defined in (15)–(17). We restrict the inner product to
be a quantum group invariant one, as defined in Section 3.1. On each representation space
we use the basis obtained from appropriate restrictions of the natural basis (“elementary
basis”) associated with the regular representation ofH as given in Appendix A. For each
indecomposable representation we give an explicit expression of the most general covariant
metric in this particular base and we calculate its signature.
• 3irr : up to a real global normalization the metric is

G = Diag(1, ∓1, 1) with signatureσ = (+ + ∓).

• 6odd: now we get the metric (β ∈ R)

G =




1 0 0 0 0 0
0 ±1 0 0 0 0
0 0 ±1 0 0 0
0 0 0 1 0 0
0 0 0 0 β 1
0 0 0 0 1 0




.

A change of basis tells us thatG ∼ Diag(1, 1, ±1, ±1, λ+, λ−), with λ+ > 0, λ− < 0.
Thus, the signature is

σ = (+ + + ± ±−).

• 5odd: if α, β ∈ R andg ∈ C, we may write the metric as

G =




α g 0 0 0
ḡ β 0 0 0
0 0 ±α ±g 0
0 0 ±ḡ ±β 0
0 0 0 0 0


 .

Given thatG ∼ Diag(λ1, λ2, ±λ1, ±λ2, 0), with arbitraryλi ∈ R, its signature may be
anything betweenσ = (+ + + + 0) andσ = (− − − − 0).
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• 3odd: here

G = Diag(1, ±1, 0) and σ = (+ ± 0).

• 6eve: up to a normalization the metric can be written as (β ∈ R)

G =




β 1 0 0 0 0
1 0 0 0 0 0
0 0 ±β ±1 0 0
0 0 ±1 0 0 0
0 0 0 0 ∓1 0
0 0 0 0 0 −1




.

The signature is clearly

σ = (+ + ∓ − − −).

• 4eve: in this case the result coincides with the one obtained using the normal Hopf star,
as we get the metric (α, β ∈ R, g ∈ C)

G =




0 0 0 0
0 0 0 0
0 0 α g

0 0 ḡ β


 .

The non-null block inG is an arbitrary Hermitian matrix, therefore the signature is not
fixed.

• 3eve: as in the untwisted case, here we find simply

G = Diag(0, 0, 1).

• 2eve: this irreducible representation has the metric

G = Diag(1, ±1).

Notice that a positive definite form is obtained for the twisted Hopf star ofSU(2) type.

3.5.2. Invariant scalar product onM
A priori, one could think that the discussion goes along the lines of Section 3.4.2 and that

nothing much should be changed. This is almost so, in the sense that invariance implies that
the onlypossibly non-zeroscalar product of type(1, z) is (1, x2y2). However, we shall show
that this quantity vanishes as well (the proof uses the left action ofH onM as discussed in
Table 1, Section 4.4 of [13]). Indeed

(1, x2y2) = (x2, y2) = q−1(x2, Ky2) = q−1(K∗x2, y2) = q−1(K−1x2, y2)

= q−1(qx2, y2) = q2q−1(x2, y2) = q(1, x2y2)

Hence(1, x2y2) = 0, and we see that the bilinear form obtained onM is totally degenerate.
This result contrasts drastically with the one obtained in the untwisted Hopf star case.
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3.5.3. Invariant scalar products on the regular representation ofH
We refer to Section 3.4.3 for the general discussion and to the next section for a study of

very specific scalar products on this representation space.

4. Scalar products on the left regular representation of a Hopf algebra

4.1. The Hermitianized Killing form

As is recalled in Appendix B, in the case of Hopf algebras there is still a notion of a
Killing form, which generalizes this particular bilinear form found in the case of Lie groups
and algebras. Moreover, it is also invariant under an adequate generalization of the adjoint
action of a group on itself, now a left action of a Hopf algebra on itself.

This Killing form (., .)u is neither symmetric nor Hermitian (actually we did not use
any star in its definition), but, given an arbitrary star operation onH , we now define a
sesquilinear form onH × H by13

(X, Y )
.=(X∗, Y )u = Trq(X∗Y ), X, Y ∈ H. (22)

This new form is obviouslyH -invariant — in the sense of (20) — under the left action of
H on itself given by simple multiplication as

(XY, Z) = Trq(Y ∗X∗Z) = (Y, X∗Z). (23)

The “symmetry” property of the Killing form (B.1) gets traduced now in

(Y, X) = (X∗, S2(Y ∗)).

In addition, if the star operation is a true Hopf one, the invariance of( , )u under the adjoint
action (B.2) implies that

(ad(SZ1)
∗(X), adZ2(Y )) = (X, Y ) ε(Z). (24)

This is so because [ad(SZ)∗(X)]∗ = adZ(X∗) for a Hopf star. Note that both properties (23)
and (24) are invariances of this Killing scalar product in the sense of (18), but with respect
to different actions. Actually, we also have for this action a∗-representation, as it is true
that

(adZ(X), Y ) = (X, adZ∗(Y )).

Finally, when the star involved in this definition is a Hopf star, the resulting form is —
or can always be chosen to be — Hermitian; we call it the “Hermitianized Killing form”
or the “Killing scalar product” (we will see later that this is not the case when one uses a
twisted star). Indeed, as we are working with a∗-representation, Tr[h∗] = Tr[h], h ∈ H .
Therefore,

(X, Y ) = Tr(u X∗Y ) = Tr(Y ∗Xu∗) = Tr(u∗Y ∗X),

13 As for the Killing form, there is always an implicit choice of representation ofH , here the left regular one.
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and

(X, Y ) = (Y, X) (25)

if u∗ = u. Using the notation of Appendix B, we know thatS2(h) = uhu−1 implies, for
a Hopf star,S2(h) = u∗h(u∗)−1. Both equations together tell us thatu−1u∗ is a central
element which, being a matrix on a representation space, should be proportional to the
identity. Moreover, the proportionality factor must be a phase ((u∗)∗ = u), and this may
always be absorbed inu to have an Hermitian form.

4.1.1. The Killing scalar product forH (Hopf star case)
We have just defined a particular scalar product based on the Killing form on the regular

representation of a quantum groupH . We analyze here the case of the finite Hopf algebra
H, takingN = 3, and we choose a Hopf star operation. Then

(X, Y ) = Trq(X∗Y ) = Tr(K−1X∗Y ), X, Y ∈ H.

In this case, the structure of the corresponding 27× 27 Hermitian matrixG in the
PBW-basis is not very transparent and we shall not give it explicitly, although its signature
can be read off easily. However, the expression ofG in what we called the “elementary
basis” is quite remarkable. Here are the following:
• Its restriction to theM(3,C) block, with basis ordering

{E11, E12, E13, E21, E22, E23, E31, E32, E33},
reads

3




0 0 0 0 0 0 0 0 q−1

0 0 0 0 0 0 0 −q−1 0
0 0 0 0 0 0 q−1 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 q 0 0 0 0 0 0
0 −q 0 0 0 0 0 0 0
q 0 0 0 0 0 0 0 0




.

• Its restriction to the subspace{A11, A12, A21, A22} of the(M2|1(32))0 block reads

6




0 0 0 q

0 0 −q 0
0 −q−1 0 0

q−1 0 0 0


 .

• Its restriction to the subspace{A33} of the(M2|1(32))0 block reads

6(1).
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All other entries vanish. This is in particular so for the scalar products mixing the three
aforementioned subspaces. All scalar products also vanish between vectors belonging to
the 13-dimensional radical spanned by the generators

{B11, B12, B21, B22, P13, Q13, P23, Q23, P31, Q31, P32, Q32}.
In other words,G is completely degenerated14 in the direction of the Jacobson radical of

H, and it does not mix the different simple components of the semisimple partH
.=M(3,C)⊕

M(2,C) ⊕ C. Moreover, we see at once thatG restricted toH is diagonal in the (hence
orthogonal) basis

{E11± q−1E33, E12± q−1E32, E13± q−1E31,

E21± q−1E23, E22; A11± q−1A22, A12± q−1A21; A33},
where it actually reads

G = 3Diag(±1, ±1, ±1, ±1, 1; ±2, ±2; 1).

The signature of the restriction ofG toH reads therefore as(8+, 6−), but it is better to
write it (with obvious notations) as

[4(+1, −1) ⊕ (+1)] ⊕ [(+1, −1) ⊕ (+1, −1)] ⊕ (+1).

4.1.2. Incompatibility between a Killing scalar product and a twisted Hopf star
Here we can follow a discussion along the same lines of the last part of Section 4.1,

but now starting fromS2(h) = uhu−1, it is easy to deduce thatS2(h) = (u∗)−1hu∗. Both
formulas together imply thatuu∗ is a central element, and this means that we will have
u∗ = cu−1 6= u (c ∈ H central).

Therefore, we cannot expect to have an Hermitian Killing scalar product if the star is a
twisted one. Having a true (Hermitian) scalar product is incompatible with the invariance
of the Killing form.

4.2. Scalar products related to invariant integrals

We first gather general facts and definitions about left- and right-invariant integrals on a
Hopf algebra. We then use these concepts — together with a star operation — to define a
particular Hermitian scalar product on finite dimensional Hopf algebras. All these notions
are illustrated with our favorite exampleH.

4.2.1. Integrals
A left-invariant integral on a Hopf algebraH overC is a linear map

∫
L : H 7→ C such

that (
id ⊗

∫
L

)
◦ 1 = 1H

∫
L
,

14 The fact that the trace of the adjoint map vanishes on the radical, a result slightly weaker than the one reported
here, was separately observed by Kastler [16].
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where1H is the unit ofH andid the identity map inH . Therefore, for anyh ∈ H we have
(as always1h = h1 ⊗ h2)

h1

∫
L
h2 = 1H

∫
L
h. (26)

A right-invariant integral
∫

R is defined in the obvious similar way.
Since

∫
L (or

∫
R) is a linear object, it can be identified with an elementλL (resp.λR) of

the dualF of H . Such an element will therefore satisfy

f λL = ε(f )λL

(or λRf = ε(f )λR) for anyf ∈ F .
Like for groups, a Hopf algebraH is calledunimodularif one can find left and right

integrals which coincide (
∫ .=∫

L = ∫
R). Furthermore, such an integral is called a Haar

measure when it is normalizable and normalized, i.e.,
∫
(1H ) = 1 (in particular

∫
should

not vanish on the unit!).
We now go back to the example whereH is a reduced quantum enveloping algebra of

typeSLq(2,C) at a root of unity,H. It is easy to see that here the left and right integrals are
respectively given (up to an overall constant) by∫

L
= (XN−1

+ XN−1
− K)?,

and ∫
R

= (XN−1
+ XN−1

− K−1)?.

Here a particular vector space basis (PBW){Xa+Xb−Kc} is chosen inH and{(Xa+Xb−Kc)?}
denotes its dual basis. In terms of elements ofF , the same left- and right-invariant integrals
onH read

λL = (1 + a + · · · + aN−1)bN−1cN−1, λR = bN−1cN−1(1 + a + . . . + aN−1).

These two integrals are not proportional and cannot be made equal;H is therefore not
unimodular and no Haar measure can be defined. The dualF ofH turns out to be unimodular
(see [23]), but the corresponding integral is not a Haar measure because it is not normalizable
as it vanishes on the unit.

Further restricting now our class of examples to the caseN = 3, it is interesting to decom-
pose the elementsX2+X2−K andX2+X2−K−1 on the elementary basis defined in Appendix
A. They read, respectively, as




 q2 0 0

0 0 0
0 0 0


 0

0


 −qθ1θ2 0 0

0 0 0
0 0 θ1θ2







,
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and 



 q 0 0

0 0 0
0 0 0


 0

0


 −q2θ1θ2 0 0

0 0 0
0 0 θ1θ2







.

On the other hand, using the PBW basis, the invariant integral15 onF can be expressed by
duality as the elementσ

.=X2+X2−(1 + K + K2) ∈ H.

4.2.2. Scalar product on the left regular representation
Using both a star operation (any) and an integral onH , we now define a kind of Hopf

algebra analog of the familiar scalar product used to discuss square integrable functions in
usual complex analysis. We take

(X, Y )L,R
.=
∫

L,R
X∗Y, (27)

which is then automatically sesquilinear and invariant. In fact, by construction this scalar
product satisfies the∗-representation condition as

(ZX, Y ) = (X, Z∗Y ).

Here,H acts on itself by left-multiplication, and the invariance is independent of the star
chosen (twisted or not).

Other properties of this scalar product will of course depend upon the kind of star used
in its definition.

The Hopf star case
• To have hermiticity of our scalar product we need only to check that∫

L,R
X∗ =

∫
L,R

X,

as(Y, X) = ∫
(X∗Y )∗ and

∫
X∗Y = (X, Y ). It is easy to see that the above property is

compatible with the left-invariance of this integral (contrarily to what will happen in the
twisted star case). Therefore, one needs to check this explicitly for each case, knowing
that a left (or right) invariant integral on a Hopf algebra is unique — if it exists — up to
a scalar multiple. We checked explicitly this property for the case ofH = H.

• From the invariance property of
∫

L, one trivially gets

1H (X, Y ) = X∗
1Y1(X2, Y2).

But this may also be interpreted — as happens with the integral — as an invariance with

15 Notice that on the groupZ3 = {1, K, K2}, the integral is given by6 = 1 + K + K2.
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respect to the right action ofF :

(X, Y ) G f = ε(f )(X, Y ) = (X G (Sf1)
∗, Y G f2).

This expression is the analog of (19) for a right action.
Recall that this is an extra invariance of the scalar product, as by construction it is

invariant under the left action ofH itself.
• In our example ofH, with N = 3, this Hermitian form expressed in terms of the

“elementary basis” defined in Appendix A gives a 27× 27 Hermitian matrixGij that
we describe now. Its restriction to the nine-dimensional subspace spanned by

{E11, E12, E13, E21, E22, E23, E31, E32, E33}

reads

1

3




0 0 0 0 0 0 0 0 q−1

0 0 0 0 0 0 0 −q−1 0

0 0 0 0 0 0 q−1 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 q 0 0 0 0 0 0

0 −q 0 0 0 0 0 0 0

q 0 0 0 0 0 0 0 0




.

Its restriction to the 2(4) + 2(1) = 10-dimensional subspace spanned by

{A11, B11, A12, B12, A21, B21, A22, B22, A33, B33}

reads

1

3




0 0 0 0 0 0 −q −q 0 0
0 0 0 0 0 0 −q 0 0 0
0 0 0 0 q q 0 0 0 0
0 0 0 0 q 0 0 0 0 0
0 0 q−1 q−1 0 0 0 0 0 0
0 0 q−1 0 0 0 0 0 0 0

q−1 −q−1 0 0 0 0 0 0 0 0
q−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 1 0




.

Finally, its restriction to the eight-dimensional subspace spanned by

{P13, Q13, P23, Q23, P31, Q31, P32, Q32}
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reads

1

3




0 0 0 q 0 0 0 0

0 0 −q 0 0 0 0 0

0 −q2 0 0 0 0 0 0

q2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0




.

All the other scalar products vanish.
First of all, we may notice at once that this Hermitian form is not degenerate (this

sharply contrasts with the Hermitianized Killing form which is degenerate along the
radical, as we saw previously). Here, the signature is(14+, 13−). The 27 eigenvalues
themselves read

1
3{(1)9, (−1)8, (β)2, (−β−1)2, (−β)3, (β

−1)3},

whereβ = 1
2(1 + √

5) is the golden number. It is interesting to notice that, although
non-degenerate, the restriction of this form to the 9+4+1 = 14-dimensional semisimple
part ofH is positive definite (this part, isomorphic with the matrix algebraM(3,C) ⊕
M(2,C) ⊕ C, as recalled in Appendix A, is spanned byEij andAkl).
The twisted star case

• It is in general not Hermitian. In fact, if we now write down (26) forh∗ and conjugate
that equation, we get

h2

∫
L
h∗

1 = 1

∫
L
h∗.

If we assume that
∫

Lh∗ = ∫
Lh, the above equation would tell us that

∫
L should also

satisfy the right-invariance condition, which will not be generally true. For instance, in
the case ofH we know that a biinvariant integral does not exist. To obtain an Hermitian
scalar product we could then add both integrals,(X, Y )

.=(
∫

L + ∫
R)X∗Y , but this one

would not have any extra invariance property.
• From the invariance property of

∫
L results

1H (X, Y ) = X∗
2Y1(X1, Y2),

which shows a left–right mixed behavior.
• The example ofH, with N = 3, is not particularly enlighting since the obtained complex

bilinear form is not Hermitian but symmetric. A numerical study of this 27× 27 matrix
in the elementary basis defined in Appendix A shows that it is not degenerate and that it
is “almost” diagonal, in the sense that the only non-diagonalGij entries areG(A11, B11),
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G(A12, B12), G(A21, B21), G(A22, B22) andG(A33, B33) together with the correspond-
ing symmetric coefficients. We however stress again the fact that, using the twisted star,
the scalar product is not Hermitian.

To conclude, the twisted Hopf star case is rather bad in this sense.

5. Discussion

As it was mentioned in Section 1, the parameterq that appears in many integrable
and conformal models is often a primitive root of unity, and such values are generally
incompatible with the choice of a compact real form on the quantum group (likeSUq(2),
for instance). For this reason the stars on “compact” quantum groups that one may define in
the context of spin chains, for example, are twisted. The discussion is however a bit subtle
and we want to make the following comments.

In the case of a spin chain of typeXXZ, for instance (see [14], for example), one may
start with theusualrotation group in three dimensions — or with its double coverSU(2) —
acting at each point of the chain. Another ingredient is given by the choice of some (unitary)
representation of this group, for instance the fundamental (s = 1/2). The Hilbert space of
the model is obtained as thenth tensor product of this representation. The Hamiltonian
of the model is given by a sum of interaction terms indexed by a discrete label, each
term being itself built in terms of (Hermitian) Pauli matrices. This Hamiltonian isnot, in
general, invariant with respect to the rotation group since the physical system is clearly not
rotationally invariant. However, in some cases, one notices that the same total Hamiltonian
commutes with the generators of a (complex) quantum group, for instanceUq(sl(2,C)). We
should stress the fact that generators ofSU(2) act on the Hilbert space in a way that is “local”
(generators rotate the states independently at each point of the chain), whereasUq(sl(2,C))

acts in a non-local way (this point of view was emphasized for instance in [24]). Notice
that hermiticity of the Hamiltonian — a Jones projector — is clearly a required constraint,
however, this property does not take place in a representation space for the quantum group
but in its commutant.

Both SU(2) and Uq(sl(2,C)) enter the discussion of the model and both have two-
dimensional representations, but the two related concepts should not be confused. For
physical reasons, it is clear that the scalar product used on the Hilbert space of the model
should not contain vectors of negative norm; for this reason it should be a bonafide positive
definite scalar product. The same Hilbert space could also be built in terms of tensor products
of the fundamental representation of the quantum groupUq(sl(2,C)), for q a root of unity;
indeed, two vector spaces overC of the same dimension are clearly isomorphic as vector
spaces. Nevertheless, in the usual construction the Hilbert space of the model acquires its
Hilbert structure from the scalar product chosen on representations ofSU(2), not from the
one chosen on the representations of the quantum group. Actually, the authors of the present
paper do not see why such a choice should be performed at all; they cannot exclude however
that it may turn out to be useful. What is in any case clear is that if one wants to choose
a scalar product on the fundamental representation ofUq(sl(2,C)) such that it will induce
the same (already given) positive scalar product on the Hilbert space of the model, one has
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to suppose that the quantum group is endowed with a star operation which is a twisted Hopf
star ofSU(2) type.

We should mention the papers [5,6], where a general study of quantum symmetries in
quantum theory is done, and where thechoiceof twisted star operations is clearly made
right at the beginning. This was actually nothing else than a choice (related to a way of
defining a covariant adjoint for field operators), and it was subsequently discovered16 that
this choice was not unique and that it would have been also perfectly possible to define
adjoints for field operators after having decided to use a “true” Hopf star operation.

In conformal theories, primary fields are associated with vectors of highest weight in a
representation of some affine algebra, and it was observed long ago that the fusion table of
such primary fields is identical to the Clebsh Gordan table describing the tensor products of
irreducible representations of some quantum group — the same quantum group also appears,
via its 6j -symbols, in the equations describing the duality properties of the conformal blocks.
At this point, one should stress that the representations of the quantum group that appear
in the associated fusion table are not to be confused with the representations of the affine
algebra. The two structures, although related (in a way that is apparently not well understood
yet, see [25]), are quite distinct and the discussion involving the nature of the scalar product
to be used in a given representation space for the affine or Virasoro generators should not
be confused with the analysis of the scalar product(s) that one can define on the modules
of the emerging quantum group.

When the parameterq is a root of unity, the representation theory is quite subtle since
indecomposable (but not irreducible) representations of the quantum group appear. Actually,
to obtain a physically meaningful state space one has to choose a so-called “truncated
tensor product”, by selecting only those representations for which theq-trace vanishes (one
can also use the formalism of quasiHopf algebras, see [6]). It is a fact that discussions
involving quantum groups in conformal field theories usually considerinfinite dimensional
Hopf algebras (likeUq(sl(2,C))), which are not “good” quantum groups whenq is a root
of unity since they are not quasitriangular in the usual sense. At the contrary, thefinite
dimensionalHopf algebras that one can obtain from those ones through division by an
(infinite dimensional) Hopf ideal are not semisimple but they are quasitriangular: they
possess (finite dimensional)R-matrices. The category of representations of these Hopf
algebras is not a modular category (tensor products of irreducible representations are not
necessarily equivalent to direct sums of irreducibles), but it is again possible to define
truncated scalar products in a very natural way. We conjecture that discussions involving
simultaneously rational conformal field theories and quantum groups should be done in
terms of such finite dimensional Hopf quotients of the usual quantum enveloping algebras
at roots of unity. A general study of these topics stays outside the scope of the present paper
but we hope that our contribution concerning stars (twisted or not) and scalar products,
together with selected examples involving finite dimensional Hopf algebra quotients of
Uq(sl(2,C)) will be useful in this respect.

16 Unpublished addendum by the same authors. We thank G. Mack for this information.
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Appendix A. Structure of the reduced Hopf algebraHHH

Whenq is a root of unity (qN = 1), the quantized enveloping algebraUq(sl(2,C))

possesses interesting quotients that are finite dimensional Hopf algebras. The structure of
the left regular representation of such an algebra was investigated in [26] and the pairing
with its dual in [27]. We callH the Hopf algebra quotient ofUq(sl(2,C)) defined by the
relations

KN = 1, XN
± = 0,

andF its dual. The generatorsK, X± are chosen to obey the following commutation and
cocommutation relations:

Product:

KX± = q±2X±K, [X+, X−] = 1

(q − q−1)
(K − K−1),

KN = 1, XN
+ = XN

− = 0 (A.1)

Coproduct:

1X+ = X+ ⊗ 1 + K ⊗ X+, 1X− = X− ⊗ K−1 + 1 ⊗ X−,

1K = K ⊗ K, 1K−1 = K−1 ⊗ K−1 (A.2)

It was shown17 in [26] that the non-semisimple algebraH is isomorphic with the direct
sum of a complex matrix algebra and of several copies of suitably defined matrix algebras
with coefficients in the ringGr(2) of Grassmann numbers with two generators. The explicit
structure of those algebras (for anyN ), including the expression of generators themselves,
was obtained by Ogievetsky [28]. Using these results, the representation theory ofH for
the caseN = 3 was presented in [22].

WhenqN = 1 with N odd,18 we have an isomorphism between theN3-dimensional
algebraH and the direct sum

H = MN ⊕ (MN−1|1(32))0 ⊕ (MN−2|2(32))0 ⊕ · · · ⊕ (M(N+1)/2|(N−1)/2(3
2))0,

(A.3)

17 Alekseev et al. [26] actually consider a Hopf algebra quotient defined byK2N = 1, XN± = 0, so their algebra
is, in a sense, twice bigger than ours (see Appendix C).
18 WhenN is even withN ′ = N/2 odd,KN ′

, XN ′
± are central and one may take the quotient byKN ′ = 1,

XN ′
± = 0; the algebra so obtained is isomorphic withH. WhenN ′ = N/2 is even the structure is quite different,

and we do not study it here (see [28]).
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where
1. MN is anN × N complex matrix,
2. an element of theMN−2|2 block (for instance) is of the kind:



• • · · · • ◦ ◦
• • · · · • ◦ ◦
...

...
...

...
...

• • · · · • ◦ ◦
◦ ◦ · · · ◦ • •
◦ ◦ · · · ◦ • •




, (A.4)

where we have introduced the following notation:• is an even element of the ringGr(2)

of Grassmann numbers with two generators,19 i.e., of the kind:

• = α + βθ1θ2, α, β ∈ C,

◦ is an odd element of the ringGr(2), i.e., of the kind:

◦ = γ θ1 + δθ2, γ, δ ∈ C,

etc.
Notice thatH is not a semisimple algebra: its Jacobson radicalJ is obtained by

selecting in Eq. (A.3) the matrices with elements proportional to Grassmann variables.
The quotientH/J is then semisimple. . . but no longer Hopf!

Projective indecomposable modules (PIMs, also called principal modules) forH are
directly given by the columns of the previous matrices.

3. From theMN block, one obtainsN equivalent irreducible representations of dimension
N that we shall denote byNirr . These representations have vanishingq-dimension.

4. From theMN−p|p block (p < N − p), one obtains
4.1. (N − p) equivalent indecomposable projective modules of dimension 2N that we

shall denote byPN−p with elements of the kind

(• • · · · •︸ ︷︷ ︸
N−p

◦ ◦ · · · ◦︸ ︷︷ ︸
p

). (A.5)

4.2. p equivalent indecomposable projective modules (also of dimension 2N ) that we
shall denote byPp with elements of the kind

(◦ ◦ · · · ◦︸ ︷︷ ︸
N−p

• • · · · •︸ ︷︷ ︸
p

). (A.6)

These PIMs have alsoq-dimension equal to zero. To each PIMPs is associated an
irreducible representation of dimensions, obtained by quotientingPs by its own radical.
These irreps have non-vanishingq-dimension, and are in one-to-one correspondence
with the so-called type II irreducible representations ofUq(sl(2,C)).

19 Remember thatθ2
1 = θ2

2 = 0 andθ1θ2 = −θ2θ1.
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Other submodules can be found by restricting the range of parameters appearing in the
columns defining the PIMs and imposing stability under multiplication by elements ofH.
In this way one can determine for each PIM the lattice of its submodules. For each PIM of
dimension 2N , one finds totally ordered sublattices with exactly three non-trivial terms: the
radical (here, it is the biggest non-trivial submodule of a given PIM), the socle (here it is the
smallest non-trivial submodule), and one “intermediate” submodule of dimension exactly
equal toN . However, the definition of this last submodule (up to an equivalence) depends
on the choice of an arbitrary complex parameterλ, so that we have a chain of inclusions
for every such parameter. The collection of all these sublattices fully determines the lattice
structure of submodules of a given principal module.

We are interested in this paper in Hopf stars (twisted or not) and invariant scalar products
for representation spaces ofH. To ease the presentation of the results, it is better to limit
ourselves to the caseN = 3 but the overall picture should be clear. From now on, we take
N = 3.

In the caseq3 = 1,H is a 27-dimensional Hopf algebra isomorphic withM(3,C) ⊕
(M2|1(32))0. Explicitly,

H =




 e11 e12 e13

e21 e22 e23

e31 e32 e33


 ⊕


 α11 + β11θ1θ2 α12 + β12θ1θ2 γ13θ1 + δ13θ2

α21 + β21θ1θ2 α22 + β22θ1θ2 γ23θ1 + δ23θ2

γ31θ1 + δ31θ2 γ32θ1 + δ32θ2 α33 + β33θ1θ2





 .

(A.7)

All entries besides theθ ’s are complex numbers (the above⊕ sign is a direct sum sign:
these matrices are 6× 6 matrices written as a direct sum of two blocks of size 3× 3).

The semisimple part̄H, given by the direct sum of its block-diagonalθ -independent
parts, is equal to the 9+ 4 + 1 = 14-dimensional algebrāH = M3(C) ⊕ M2(C) ⊕ C.
The radical (more precisely the Jacobson radical)J ofH is the left-over piece that contains
all the Grassmann entries, and only the Grassmann entries, soH̄ = H/J . The radical has
therefore dimension 13.

PIMs are given by the columns of the previous expression. We see that the left regular
representation splits into a sum of three equivalent three-dimensional projective indecom-
posable representations that we call 3irr (they are also irreducible) given by the columns of
M(3,C), two equivalent six-dimensional projective indecomposable representations that we
call 6evegiven by the first two columns of(M2|1(32))0 and one six-dimensional projective
indecomposable representation that we call 6odd given by the last column of(M2|1(32))0.
The left regular representation can therefore be decomposed as follows:

3[3irr ] ⊕ 2[6eve] ⊕ 1[6odd].

All these projective indecomposable representations have zero quantum dimension.
Irreducible representations are obtained by taking the quotient of the projective inde-

composable ones by their respective radical (killing the Grassmann variables). One obtains
in this way the irreducible representation 3irr that we already had, a two-dimensional ir-
reducible 2irr (quotient of 6eve) and a one-dimensional irreducible 1irr (quotient of 6odd).
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Notice that 2irr and 1irr do not have vanishing quantum dimension, whereas as we already
mentioned the 3irr is special in this respect, since it is also one of the PIMs.

In order to discuss the results it is convenient to select a particular linear basis inH.
Actually, three of them turn out to be quite useful. The first one, the “PBW-basis”, is given
(up to ordering) by the set of monomialsXa+Xb−Kc.

The second one, that we shall call the “elementary basis”, comes from the previous iso-
morphism withM(3,C)⊕(M2|1(32))0. We callEij the elementary matrices corresponding
to theM(3,C)block (they correspond to theeij coefficients of (A.7)). As for the(M2|1(32))0

block, we callAij , Bij , Pij , Qij the elementary matrices corresponding to theαij , βij , γij , δij

coefficients, respectively. Clearly, this set of elementary matrices is also a basis ofH and
it is not too difficult (though it is cumbersome) to express each of its elements in terms of
the PBW-basis.

The last useful basis, directly related to the elementary basis, is defined in Section 4.1.1,
it has the property of diagonalizing the “Hermitianized” Killing form.

Appendix B. The Killing form on a quantum group

B.1. The adjoint representation of a quantum group

If X ∈ H , then the adjoint mapadX : H 7→ H is defined by

adX(Y )
.=X1 Y S(X2).

Notice that this definition generalizes both the notion of adjoint representation for groups
(where1g = g ⊗g andS(g) = g−1, g being a group element) and for Lie algebras (where
1X = X ⊗ 1 + 1 ⊗ X andS(X) = −X, X being a Lie algebra element).

The representation ad is a left action.It is indeed easy to show that

adXY(Z) = adX(adY (Z)).

Actually, it is also possible to define “another” adjoint representation by replacing the
previous definition byS(X1)YX2; this is not a left action but a right one (so it can be called
the “right”-adjoint action).

One could be tempted to consider the right actionS−1(X1)YX2 or the left actionX1YS−1

(X2) but these actions are not compatible with the algebra structure (indeed acting on the
unit with some elementX would not giveε(X) 1). Moreover, it is not very useful to consider
the left and right actionsX2YS−1(X1) andS−1(X2)YX1 since, although compatible with
the algebra structure, they are essentially equivalent with the previously given definitions
for the left and right adjoint actions. In fact the antipode intertwines both maps.

In the sequel, we shall only use the first definition of the adjoint action, we should therefore
remember that it is a left action.

The adjoint action is compatible with the algebra structure.One indeed shows that

adX(YZ) = adX1(Y ) adX2(Z).
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Notice that the two given properties allow one to easily compute the explicit expression for
the adjoint representation once it is known on the generators.

Case ofH. In this case, one obtains easily the adjoint action on the generators:

adK(K) = K, adX−(K) = (1 − q−2)X−K2, adK(X−) = q−2X−,

adX−(X−) = 0, adK(X+) = q2X+, adX−(X+) = 1 − K2

q − q−1
,

adX+(K) = (1 − q2)X+K, adX+(X+) = (1 − q2)X2
+

adX+(X−) = (1 − q−2)X+X− + K − K−1

q3 − q
.

B.2. The quantum trace

If H is a quasitriangular Hopf algebra, with an universalR-matrixR, there exists in it a
special element

u0
.=m[(S ⊗ id)R21].

Such an element is invertible and allows to write explicitlyS2 as an inner automorphism
(see [2] for a proof and a more general discussion):

S2(h) = u0hu−1
0 , ∀h ∈ H.

On the other hand, givenρ a representation ofH on a spaceV , the quantum trace is
the map defined by the following chain of isomorphisms, all of them commuting with the
H -action:

End(V ) → V ⊗ V ? → V ?? ⊗ V ? → C.

Remember that given a representation onV , one obtains naturally a representation on its dual
spaceV ?, by making use of the antipode (hFv? is such that〈hFv?, w〉 = 〈v? S(h)Fw〉 ∀w ∈
V ). The non-canonical isomorphismV ' V ?? given byv → ρ(u0)v is needed in order
to make the chain commute with the action of the quantum group. Therefore, the resulting
expression for the quantum trace in terms of the ordinary operator trace onV is

Trq(X) = Tr(ρ(u0)X), X ∈ End(V ).

As u0 has no reason to be group-like, this trace is in general not multiplicative on tensor
products of representations ofH , but can be made so ifH is a ribbon Hopf algebra. In
this case there exists an invertible and central elementv ∈ H such thatv2 = u0S(u0),
S(v) = v, and1v = (R21R12)

−1(v ⊗ v). Now u0 may be replaced in Trq by u
.=v−1u0,

which is group-like. It is still true thatS2(h) = uhu−1, becausev is central.
In the case ofH = H we findu = K−1 (andv = 1).
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B.3. The Killing form

LetX, Y denote two matrices (withC-number entries!) representing elementsX andY of
a Hopf algebraH in some representation (we keep the same notation, here, for elements of
the Hopf algebra and their matrix representatives). The Killing form in this representation
is defined by

(X, Y )u
.=Trq(XY) = Tr(uXY).

The terminology “Killing form” usually refers to a particular bilinear form on a Lie algebra
and its representations. Extension of this notion to the enveloping associative algebra is
usually not considered. In the present case, we are therefore using a slightly generalized ter-
minology (like in [29]). Notice that in our examples the Hopf algebraH is finite dimensional,
so we can even discuss the structure of this Killing form in the regular representation.

Symmetry of the Killing form.As S2(X) = uXu−1, then

(X, S2(Y ))u = (X, uYu−1)u = Tr(uXuYu−1) = Tr(XuY) = Tr(uYX).

Therefore,

(Y, X)u = (X, S2(Y ))u. (B.1)

This reduces to the usual symmetry whenS2 is the identity, which is in particular the case
for a group.

Invariance of the Killing form under the adjoint action.One can show that

(adZ1(X), adZ2(Y ))u = (X, Y )u ε(Z). (B.2)

In the classical case of a group or a Lie algebra, this reduces to the usual invariance of the
Killing form under the adjoint action.

To prove this property, one needs the following lemma:

Tr(u adX(Y )) = Tr(uY) ε(X).

Indeed,

Tr(u adX(Y )) = Tr(uX1YS(X2)) = (X1, YS(X2))u = (YS(X2), S
2(X1))u

= Tr(uYS(X2)S
2(X1)) = Tr(uY) ε(X).

Therefore, the left-hand side of (B.2) reads

Tr(u adZ1(X) adZ2(Y )) = Tr(u adZ(XY)) = Tr(u XY) ε(Z) = (X, Y )u ε(Z).

Appendix C. The “double” H̃̃H̃H ofHHH

We now takeqN = 1 (N odd), as before, but consider the finite dimensional quotient
H̃ of the quantum algebraUq(sl(2,C)) by the Hopf ideal defined byXN± = 0, K2N = 1



R. Coquereaux et al. / Journal of Geometry and Physics 36 (2000) 22–59 57

(rather thanKN = 1). Notice that this “double” has nothing to do with what is called the
“quantum double” of a Hopf algebra in the literature.

In order to make use of all the results concerningH, takeX± andK as the generators of
H, as before, and call̃X± andK̃ the generators of̃H. Now set

K̃ = σ3 ⊗ K = Diag(K, −K), X̃+ = 1 ⊗ X+ = Diag(X+, X+),

X̃− = σ3 ⊗ X− = Diag(X−, −X−), (C.1)

whereσi are the Pauli matrices. This provides an explicit realization ofH̃ in terms ofH.
One sees immediately that dim(H̃) = 2 dim(H) = 2N3 and obtains also forN = 3 an
explicit expression for the generators, in terms of Grassmann valued 12× 12 matrices, by
using the expressions ofX±, K given in [22] or [13]. By construction, it is clear thatH is
aZ2 quotient ofH̃— notice that the group generated by powers ofK̃ is no longerZ3, like
before, butZ3 × Z2 and thatK̃3 is a non-trivial central element.

The representation theory of this algebra can then be obtained in a straightforward man-
ner: projective indecomposable representations are still given by the columns of the cor-
responding isomorphic Grassmann valued matrix algebra; the ones appearing in the upper
diagonal 6× 6 block of (C.1) are the same 3irr , 6odd and 6eve considered in Appendix A;
those appearing in the lower block will be denoted by 3−

irr , 6−
odd and 6−eve. More generally

(for arbitraryN ), we see that indecomposable representations ofH̃ are of two kinds: they
can be labeled byω = ±1, those for whichω = 1 arealsorepresentations ofH, whereas
those for whichω = −1 only appear as representations ofH̃. These two kinds of represen-
tations can therefore be distinguished by the eigenvalue of the non-trivial central element
K̃3. Remark that, wheñH is (faithfully) realized, as explained above, in terms of 12× 12
matrices with Grassmann entries, the restrictionsK|1 andK|2 of K̃ to the upper and lower
blocks are such that̃K|31 = 13×3, andK̃|32 = −16×6.

It may be useful to recall that, whenq is an odd (N ) root of unity, the center ofUq(sl(2,C))

is generated by the CasimirC, XN± andK±N . Callc, x, y andz±1 the values of these central
elements in irreducible representations. There are irreducible representations “of classical
type” usually denoted by Spin(j, ω), wherej is a half-integer spin andω = ±1; in those
representationsx = y = 0 andz = ωN = ±1. There are also irreducible representations
“of non-classical type” which can be “periodic” (xy 6= 0) or semiperiodic (xy = 0 but
eitherx 6= 0 or y 6= 0); such representations do not appear for finite dimensional Hopf
algebras quotients such asH since bothx andy will then automatically vanish. Somehow,
consideringH̃ instead ofH has the interest of allowing one to recover also the irreducible
representations ofUq(sl(2,C)) with ω = −1 as representations of a quasitriangularfinite
dimensional Hopf algebra.

A general discussion concerning Hopf stars, twisted or not, and scalar products can be
done here along the same general lines as before. In particular, notice that when we choose
one of the two possible twisted Hopf stars (X∗+ = ±X−, X∗− = ±X+, K∗ = K−1), the
invariant scalar products associated with the family of corresponding star representations
(ω = ±1) ofH̃ simultaneously exhibit features that in the case ofHwere obtained separately
for (twisted) stars of typeSU(2) or SU(1, 1). For example, we know (see Section 3.5.1)
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that the invariant scalar product on 3irr (i.e., ω = +1) associated with theSU(2) twisted
Hopf star is of signature(+ + −), and that the signature is(+ + +) for the twisted star
of typeSU(1, 1). It happens that the conclusions are just to be reversed when we replace
3irr by 3−

irr (ω = −1). It may also be of interest to notice that invariant scalar products
corresponding to irreducible representations 3−

irr and 2eve (for the twistedSU(2) case), or
3irr and 2−eve(for the twistedSU(1, 1) case) of this doublẽH have a positive definite metric.

Regarding invariant scalar products on the left regular representation ofH̃ (as a module-
algebra), we have a freedom of 54 real parameters, for the same reasons as those given in
Section 3.4.3, but specific scalar products can be defined as in Section 4.

Remark (The simply connected form ofUq(sl(2,C))). A standard construction at the level
of the infinite dimensional universal quantum algebra(see for example[2,3]) Uq(sl(2,C))

consists in introducing a square rootk for K, so thatk2 = K; it is also useful to define
generatorsI± for which the coproduct is symmetrical, i.e., 1I± = I± ⊗ k−1 + k ⊗ I±.
This infinite dimensional algebra generated by{k, I±} is often called the “simply connected
form” of Uq(sl(2,C)) and denoteďUq(sl(2,C)). (In the literature this object is sometimes
called just SLq(2)!) Uq(sl(2,C)) is a Hopf subalgebra of̌Uq(sl(2,C)); the explicit inclusion
of the former in the latter can be obtained by takingK = k2, X+ = I+k andX− = k−1I−.
Sincek3 is central, one could then be tempted to build a finite dimensional Hopf quotient
of Ǔq(sl(2,C)) by factoring it by the ideal given byI3± = 0 andk3 = 1. The point is that
one does not get anything essentially new by doing so: the obtained quotient is isomorphic
withH itself. Indeed, let us setK

.=k2 at the level of this quotient, thenK2 = k4 = k and
K3 = k6 = 1. Hence the relation betweenk andK can be inverted. Moreover, one can
check explicitly(thanks to the previously given change of variables betweenX± andI±) that
all the algebra and coalgebra relations of this finite dimensional quotient ofǓq(sl(2,C))

coincide exactly with those given forH itself.
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